Applying Natural Language Processing to real-world patient data to optimise cancer care
将自然语言处理应用于现实世界的患者数据以优化癌症护理
基本信息
- 批准号:2897525
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nearly 400,000 people are diagnosed with cancer each year, causing more than 167,000 deaths. Incidence and mortality are strongly associated with socioeconomic factors, with around 19,000 extra cancer deaths attributed to deprivation. Decisions on how best to treat cancer patients are based on evidence which is usually generated through the use of clinical trials. However, only a small fraction of patients participate in these studies, and many patient groups such as the frail, those with multiple medical problems, and ethnic minorities, are under-represented. This means there are large sections of the population, particularly the deprived (who suffer disproportionately from cancer), where the available evidence might not apply, perpetuating health inequalities. Routine 'real-world' patient data, collected about every patient as part of their normal treatment, offers an opportunity to provide evidence where clinical trial data doesn't or will not exist. The vision of this project is to learn from every patient treated.Artificial Intelligence approaches using real-world data can be used to understand patterns in cancer diagnosis and treatment, and to provide prospective assessment of the impact of healthcare innovations, but need the data to be structured to enable its processing. Modern Electronic Healthcare Records (EHRs) can collect data in the required format. However, historical data and many current sources of patient information (e.g. out-patient letters, radiology reports) often exist only as free-text medical notes, and therefore needs to be coded, i.e. structured, first. In this project, we will develop and apply Natural Language Processing (NLP) technologies to recover structured data from medical notes. We will then use these data to validate and improve models to predict cancer patients' clinical outcomes, and to see if patients' experience of their cancer treatment agrees with clinical assessments of their outcome and might provide early warning of evolving treatment related toxicity in head and neck cancer. This project is an exciting collaboration between the Division of Cancer Sciences and the Department of Computer Science/Alan Turing Institute, and as such the project student will benefit from close proximity to the clinical teams at The Christie NHS Foundation Trust, the largest single site cancer centre in Europe, and data science expertise at the University.
每年将近40万人被诊断出患有癌症,造成167,000多人死亡。发病率和死亡率与社会经济因素密切相关,大约有19,000个额外的癌症死亡归因于剥夺。关于如何最好地治疗癌症患者的决定是基于通常通过临床试验产生的证据。但是,只有一小部分患者参与了这些研究,许多患者群体,脆弱的患者,有多个医疗问题的患者和少数民族的人数不足。这意味着有大量人口,尤其是被剥夺的人(因癌症而遭受不成比例的痛苦),在这些证据可能不适用,使健康不平等永存。作为正常治疗的每位患者收集的常规“现实世界”患者数据提供了一个机会,可以提供证据,而临床试验数据不存在或不存在。该项目的愿景是向每位接受治疗的患者学习。使用现实世界数据的人工智能方法可用于了解癌症诊断和治疗中的模式,并对医疗创新的影响进行预期评估,但需要构造数据以启用其处理。现代电子医疗保健记录(EHRS)可以以所需的格式收集数据。但是,历史数据和许多当前的患者信息来源(例如门诊信,放射学报告)通常仅作为自由文本医学注释,因此需要编码,即结构化。在这个项目中,我们将开发和应用自然语言处理(NLP)技术,以从医疗笔记中恢复结构化数据。然后,我们将使用这些数据来验证和改进模型,以预测癌症患者的临床结果,并查看患者对癌症治疗的经验是否符合其结局的临床评估,并可能会在头部和颈部癌中对不断发展的治疗相关的毒性提供预警。该项目是癌症科学部与计算机科学/艾伦·图灵研究所(Alan Turing Institute)之间的激动人心的合作,因此,该项目的学生将受益于欧洲最大的单个现场癌症中心克里斯蒂NHS基金会信托基金会(Christie NHS Foundation Trust)的临床团队,这是欧洲最大的单一站点癌症中心,以及该大学的数据科学专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
自然语言生成的无监督评价方法研究
- 批准号:62306160
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
因果机制引导的自然语言处理深度学习建模研究
- 批准号:62336006
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
基于多模态感知与自然语言理解的机器人自主任务规划方法研究
- 批准号:62373129
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自然语言驱动的建筑物室内外一体化矢量模型重建方法
- 批准号:42371457
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于自然语言查询的视觉目标跟踪方法研究
- 批准号:62306095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Applying After-Action Reviews to Child and Family Teams to Improve Mental Health Service Linkage within Child Welfare Services
对儿童和家庭团队进行事后审查,以改善儿童福利服务中的心理健康服务联系
- 批准号:
10406508 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Applying After-Action Reviews to Child and Family Teams to Improve Mental Health Service Linkage within Child Welfare Services
对儿童和家庭团队进行事后审查,以改善儿童福利服务中的心理健康服务联系
- 批准号:
10677045 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Applying Novel Analytic Methods to Address the Impact of Race on Patient-Provider Communication
应用新颖的分析方法来解决种族对医患沟通的影响
- 批准号:
10187911 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Investigation of a method for extracting events that contribute to daily emotional experiences by applying natural language processing techniques
研究应用自然语言处理技术提取有助于日常情感体验的事件的方法
- 批准号:
20K22283 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Identifying & Classifying Bias in Cultural Heritage Catalogues: Applying Natural Language Processing to University of Edinburgh Archival Descriptions
识别
- 批准号:
2356289 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship