Computational Methods for Transcriptional Mapping of Eukaryotic Genomes

真核基因组转录作图的计算方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): Understanding the processes that regulate the transcription of genes is central to understanding evolution, the development of multicellular organisms, and the response to pathological changes, including cancer and heart disease. This proposal aims to make substantial progress in developing and testing computational methods, and then applying them to experimental systems. We develop and deploy a battery of computational methods aimed at associating regulators with their targets, and inferring sequences that are targets for currently unidentified regulators. Testing and validation is carried out both retrospectively, against well curated databases, and prospectively, using a variety of experimental methods on a selected set of predictions. The specific aims include the following. 1. Develop and test innovative approaches for discovering new binding sites for well studied regulators, as well as sites for currently unidentified regulators. The former method requires integrating numerous and often very large datasets and then pruning the features to identify those that are biologically most relevant. Our preliminary results suggest that doing so substantially improves performance over existing methods 2. Implement all algorithms on IBM BlueGene/L This is one of the fastest machines available, though implementing algorithms on it requires a fair amount of technical sophistication. Our current implementation increases compute power over standard 2 GHz processors by approximately 20-fold. The use of Blue Gene/ L in combination with (1) will put the research community in a position to make discoveries that are substantially greater in number and more reliable than is currently possible. 3. Apply and test the methods on (i) the full S Cerevisiae genome and (ii) the mammalian GABA A receptor family. The former offers the advantages of being well studied, of providing a large set for data for testing, and of being relatively simple compared to the mammalian genome. GABA is the major inhibitory neurotransmitter in the central nervous system (CNS), and plays a key role in CNS development and disease.
描述(由申请人提供):了解调节基因转录的过程对于理解进化,多细胞生物的发展以及对病理变化的反应,包括癌症和心脏病,至关重要。该建议旨在在开发和测试计算方法上取得重大进展,然后将其应用于实验系统。我们开发并部署了一系列计算方法,旨在将调节器与目标相关联,并推断为当前身份不明的监管机构的目标。回顾性的测试和验证都是针对精心策划的数据库进行的,并使用各种实验方法对选定的一组预测进行。具体目的包括以下内容。 1。开发和测试创新方法,以发现针对经过良好研究的调节器以及目前身份不明的监管机构的现场。前一种方法需要整合众多且通常非常大的数据集,然后修剪这些功能,以识别生物学上最相关的功能。我们的初步结果表明,在现有方法2上这样做可以大大提高性能2。在IBM Bluegene/L上实现所有算法,这是可用的最快机器之一,尽管在其上实现算法需要相当多的技术成熟。我们目前的实施将对标准2 GHz处理器的计算功率提高了约20倍。蓝色基因/ L与(1)结合使用将使研究社区的发现数量要大得多,并且比目前可能更可靠。 3。应用并测试(i)完整的酿酒酵母基因组和(ii)哺乳动物GABA A受体家族的方法。前者提供了经过深入研究的优势,提供了用于测试数据的大型数据,并且与哺乳动物基因组相比相对简单。 GABA是中枢神经系统(CNS)中主要的抑制性神经递质,并且在CNS发育和疾病中起关键作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES DELISI其他文献

CHARLES DELISI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES DELISI', 18)}}的其他基金

New Methods for Cancer Class Discovery and Prediction: Integration, visualization
癌症类别发现和预测的新方法:整合、可视化
  • 批准号:
    7686950
  • 财政年份:
    2008
  • 资助金额:
    $ 62.42万
  • 项目类别:
New Methods for Cancer Class Discovery and Prediction: Integration, visualization
癌症类别发现和预测的新方法:整合、可视化
  • 批准号:
    7540287
  • 财政年份:
    2008
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8878298
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Computational Methods for Transcriptional Mapping of Eukaryotic Genomes
真核基因组转录作图的计算方法
  • 批准号:
    7668034
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining Visualization and Analysis
Visant-Predictome:集成、采矿可视化和分析系统
  • 批准号:
    7663288
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8502710
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8687676
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining Visualization and Analysis
Visant-Predictome:集成、采矿可视化和分析系统
  • 批准号:
    7287965
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining Visualization and Analysis
Visant-Predictome:集成、采矿可视化和分析系统
  • 批准号:
    7457647
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8017145
  • 财政年份:
    2007
  • 资助金额:
    $ 62.42万
  • 项目类别:

相似国自然基金

含2,3-二氨基丁酸结构单元的天然产物发现及生物合成研究
  • 批准号:
    22307129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
γ-氨基丁酸对高温胁迫下长牡蛎能量收支和免疫应答的调控机制
  • 批准号:
    32373170
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
肠道γ-氨基丁酸能神经元通过ILC3调控肠道稳态的分子机制研究
  • 批准号:
    82371826
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
γ-氨基丁酸通过代谢重编程调控巨噬细胞向M2型极化促进HBV复制的机制及其诊断价值研究
  • 批准号:
    82372316
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
γ-氨基丁酸诱导嗜酸性粒细胞抗炎表型在炎症性肠病中的作用及机制研究
  • 批准号:
    82300602
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leveraging systems pharmacology to advance precision medicine for Gabapentin treatment of AUD
利用系统药理学推进加巴喷丁治疗 AUD 的精准医学
  • 批准号:
    10629306
  • 财政年份:
    2022
  • 资助金额:
    $ 62.42万
  • 项目类别:
Decoding Antibiotic-induced Susceptibility to Clostridium difficile Infection
解读抗生素诱导的艰难梭菌感染易感性
  • 批准号:
    9108593
  • 财政年份:
    2016
  • 资助金额:
    $ 62.42万
  • 项目类别:
Decoding Antibiotic-induced Susceptibility to Clostridium difficile Infection
解读抗生素诱导的艰难梭菌感染易感性
  • 批准号:
    9333177
  • 财政年份:
    2016
  • 资助金额:
    $ 62.42万
  • 项目类别:
Decoding Antibiotic-induced Susceptibility to Clostridium difficile Infection
解读抗生素诱导的艰难梭菌感染易感性
  • 批准号:
    9764246
  • 财政年份:
    2016
  • 资助金额:
    $ 62.42万
  • 项目类别:
Multiscale Modeling of the Mammalian Circadian Clock: The Role of GABA Signaling
哺乳动物昼夜节律钟的多尺度建模:GABA 信号传导的作用
  • 批准号:
    9352333
  • 财政年份:
    2016
  • 资助金额:
    $ 62.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了