Side-by-side comparison of blood-brain barrier models

血脑屏障模型的并排比较

基本信息

  • 批准号:
    7326318
  • 负责人:
  • 金额:
    $ 50.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-12-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The blood-brain barrier (BBB) is crucial for complex issues such as drug delivery, pathogenesis of chronic neurological diseases involving BBB dysfunction (e.g., brain tumors, ischemia, hypoxia, brain edema, multiple sclerosis, and meningitis) and issues related to bio-defense. Since the BBB selectively (by specific transport mechanisms) excludes most blood-borne substances and xenobiotics from entering the brain, protecting it from systemic influences. Unfortunately, bio-defense systems that developed to protect the brain from potentially dangerous substances may also contribute to the phenomenon known as multiple drug resistance (MDR) during treatment of several CNS disorders, such as drug refractory epilepsy or intractable brain tumors. Every year millions of dollars are spent by pharmaceutical companies to develop alternative pharmaceutical strategies that bypass the shielding of brain parenchyma and to study new therapeutic approaches using in vivo or in vitro models of the BBB, many of which end up not working. Rational CNS drug design cannot entirely and exclusively rely upon the physical-chemical properties of putative neurotherapeutics, since lipophilicity alone is a poor predictor for drug penetration into the CNS. This is particularly true for three large families of CNS drugs, antineoplastics, antivirals and antiepileptics. Studies performed in small animals including rodents cannot be directly extrapolated to human tissue. Preliminary results from this and other laboratories have convincingly demonstrated that use of rodent brain endothelial cells and in general endothelial cell lines from non human sources as models of clinical pharmacology are flawed. We propose to: 1) To compare the permeability values of clinically relevant antiepileptic drugs in vivo versus in vitro. This will be performed by measuring the penetration of drugs into the naive rodent brain compared to DIV-BBB established with control (i.e., non-multiple drug resistant) blood-brain barrier endothelial and glial cells. 2) To compare the permeability value of antiepileptic drugs measured directly in serum and brain of pharmacoresistant patients or in our in vitro model comprising of cells from comparable multiple drug resistant subjects. 3) To develop an automated drug dosing and sampling system to allow for automated control, data collection and analysis on large number of modules at the same time. We will also assess the feasibility of the use of a microdialysis probe for on line sampling which will overcome the need of radio- or fluorescent labeled compounds for permeability studies. 4) To implement a new design of the trans-endothelial electrical resistance measurement system in order to allow for the measurement of the impedance of BBB by the use of a ramp of different frequencies. We propose to develop and validate an improved dynamic in vitro blood-brain barrier (DIV-BBB) model that reproduces the functional characteristics of the BBB in vivo, features higher predictability, and is fully scalable and customizable. As such, it will be perfectly suited for extensive pharmacological and physiological studies. In addition, the use of DIV-BBB can be extended to research applications in Neuroscience. The DIV- BBB can be successfully used to better understand the principles of brain drug delivery, to acquire relevant knowledge of the BBB anatomy and physiology, and to study the mechanism of endothelial cells differentiation into a BBB phenotype. Considering these realistic premises, the DIV-BBB can be used to study the effects of pathophysiological conditions and facilitate the design of novel CNS drugs and therapeutical approaches targeting the brain with clear benefits for the patients.
描述(由申请人提供):血脑屏障 (BBB) 对于复杂问题至关重要,例如药物输送、涉及 BBB 功能障碍的慢性神经系统疾病的发病机制(例如脑肿瘤、缺血、缺氧、脑水肿、多发性硬化症和脑膜炎)以及与生物防御相关的问题。由于血脑屏障选择性地(通过特定的运输机制)排除大多数血液传播物质和异生物质进入大脑,从而保护大脑免受全身影响。不幸的是,为保护大脑免受潜在危险物质侵害而开发的生物防御系统也可能在治疗多种中枢神经系统疾病(例如药物难治性癫痫或难治性脑肿瘤)期间导致多重耐药(MDR)现象。制药公司每年花费数百万美元来开发绕过脑实质屏蔽的替代药物策略,并使用 BBB 的体内或体外模型研究新的治疗方法,其中许多最终都不起作用。合理的中枢神经系统药物设计不能完全且完全依赖于假定的神经治疗药物的物理化学特性,因为亲脂性本身并不能很好地预测药物渗透到中枢神经系统的情况。对于中枢神经系统药物抗肿瘤药、抗病毒药和抗癫痫药三大家族来说尤其如此。在包括啮齿动物在内的小动物中进行的研究不能直接推断到人体组织。该实验室和其他实验室的初步结果令人信服地证明,使用啮齿动物脑内皮细胞和一般非人类来源的内皮细胞系作为临床药理学模型是有缺陷的。我们建议:1)比较临床相关抗癫痫药物体内和体外的渗透性值。这将通过测量药物渗透到幼稚啮齿动物大脑中的情况来进行,与用对照(即非多重耐药性)血脑屏障内皮细胞和神经胶质细胞建立的 DIV-BBB 进行比较。 2) 比较直接在耐药患者的血清和大脑中或在我们的由来自可比较的多重耐药受试者的细胞组成的体外模型中测量的抗癫痫药物的渗透性值。 3)开发自动化药物给药和采样系统,以允许同时对大量模块进行自动控制、数据收集和分析。我们还将评估使用微透析探针进行在线采样的可行性,这将克服在渗透性研究中使用放射性或荧光标记化合物的需要。 4)实施跨内皮电阻测量系统的新设计,以便允许通过使用不同频率的斜坡来测量BBB的阻抗。我们建议开发和验证一种改进的动态体外血脑屏障(DIV-BBB)模型,该模型可重现体内 BBB 的功能特征,具有更高的可预测性,并且完全可扩展和可定制。因此,它非常适合广泛的药理学和生理学研究。此外,DIV-BBB 的使用可以扩展到神经科学的研究应用。 DIV-BBB可成功用于更好地理解脑部药物传递原理,获得BBB解剖和生理学的相关知识,并研究内皮细胞分化为BBB表型的机制。考虑到这些现实前提,DIV-BBB 可用于研究病理生理条件的影响,并促进针对大脑的新型 CNS 药物和治疗方法的设计,为患者带来明显的益处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

EDWARD J. RAPP其他文献

EDWARD J. RAPP的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('EDWARD J. RAPP', 18)}}的其他基金

Untethered Mouse EEG Radio for Sleep
用于睡眠的无线鼠标脑电图无线电
  • 批准号:
    7288689
  • 财政年份:
    2006
  • 资助金额:
    $ 50.49万
  • 项目类别:
Untethered Mouse EEG Radio for Sleep
用于睡眠的无线鼠标脑电图无线电
  • 批准号:
    7154250
  • 财政年份:
    2006
  • 资助金额:
    $ 50.49万
  • 项目类别:
Side-by-side comparison of blood-brain barrier models
血脑屏障模型的并排比较
  • 批准号:
    7153449
  • 财政年份:
    2006
  • 资助金额:
    $ 50.49万
  • 项目类别:
Side-by-side comparison of blood-brain barrier models
血脑屏障模型的并排比较
  • 批准号:
    7503375
  • 财政年份:
    2006
  • 资助金额:
    $ 50.49万
  • 项目类别:
Rodent Radio for Neurological Studies
用于神经学研究的啮齿动物无线电
  • 批准号:
    6656972
  • 财政年份:
    2002
  • 资助金额:
    $ 50.49万
  • 项目类别:
Rodent Radio for Neurological Studies
用于神经学研究的啮齿动物无线电
  • 批准号:
    6551378
  • 财政年份:
    2002
  • 资助金额:
    $ 50.49万
  • 项目类别:
Wireless Surgical Neuromonitoring Device
无线手术神经监测设备
  • 批准号:
    6402396
  • 财政年份:
    2001
  • 资助金额:
    $ 50.49万
  • 项目类别:

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 50.49万
  • 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
  • 批准号:
    10522665
  • 财政年份:
    2022
  • 资助金额:
    $ 50.49万
  • 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
  • 批准号:
    10654014
  • 财政年份:
    2022
  • 资助金额:
    $ 50.49万
  • 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
  • 批准号:
    10508956
  • 财政年份:
    2022
  • 资助金额:
    $ 50.49万
  • 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
  • 批准号:
    10662561
  • 财政年份:
    2022
  • 资助金额:
    $ 50.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了