Side-by-side comparison of blood-brain barrier models
血脑屏障模型的并排比较
基本信息
- 批准号:7326318
- 负责人:
- 金额:$ 50.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-12-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:ABCB1 geneAdherent CultureAnimalsAntiepileptic AgentsAntineoplastic AgentsAntiviral AgentsAppearanceBloodBlood - brain barrier anatomyBlood capillariesBrainBrain EdemaBrain NeoplasmsBypassCell Differentiation processCell LineCellsCentral Nervous System DiseasesCharacteristicsChemicalsChronicClinicalClinical PharmacologyClinical TrialsComplexComputer softwareConditionCultured CellsDataData CollectionDevicesDiseaseDoseDrug Delivery SystemsDrug DesignDrug KineticsDrug resistanceDrug usageElectric CapacitanceElectrical ResistanceElectronicsEndothelial CellsEndotheliumEnvironmentEpilepsyExperimental DesignsFamilyFrequenciesFunctional disorderGoalsHumanHypoxiaIn VitroIndividualIschemiaKnowledgeLabelLaboratoriesMeasurementMeasuresMeningitisMicrodialysisModelingModificationMulti-Drug ResistanceMultiple SclerosisNeurogliaNeuronsNeurosciencesNumbersPathogenesisPatientsPenetrationPermeabilityPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhasePhenotypePhysiologicalPhysiologyProgress ReportsPropertyPublishingRadioRampRefractoryResearchResistanceResistance developmentRodentSamplingScanningScreening procedureSerumSideSourceSystemTestingTight JunctionsTimeTodayTubeValidationWorkXenobioticsbasecapillarychemical propertyclinically relevantcostdesigndrug developmentelectric impedancehuman tissueimprovedin vitro Modelin vivolipophilicitymonolayermulti drug transporternervous system disordernovelnovel therapeuticsresearch studysound
项目摘要
DESCRIPTION (provided by applicant): The blood-brain barrier (BBB) is crucial for complex issues such as drug delivery, pathogenesis of chronic neurological diseases involving BBB dysfunction (e.g., brain tumors, ischemia, hypoxia, brain edema, multiple sclerosis, and meningitis) and issues related to bio-defense. Since the BBB selectively (by specific transport mechanisms) excludes most blood-borne substances and xenobiotics from entering the brain, protecting it from systemic influences. Unfortunately, bio-defense systems that developed to protect the brain from potentially dangerous substances may also contribute to the phenomenon known as multiple drug resistance (MDR) during treatment of several CNS disorders, such as drug refractory epilepsy or intractable brain tumors. Every year millions of dollars are spent by pharmaceutical companies to develop alternative pharmaceutical strategies that bypass the shielding of brain parenchyma and to study new therapeutic approaches using in vivo or in vitro models of the BBB, many of which end up not working. Rational CNS drug design cannot entirely and exclusively rely upon the physical-chemical properties of putative neurotherapeutics, since lipophilicity alone is a poor predictor for drug penetration into the CNS. This is particularly true for three large families of CNS drugs, antineoplastics, antivirals and antiepileptics. Studies performed in small animals including rodents cannot be directly extrapolated to human tissue. Preliminary results from this and other laboratories have convincingly demonstrated that use of rodent brain endothelial cells and in general endothelial cell lines from non human sources as models of clinical pharmacology are flawed. We propose to: 1) To compare the permeability values of clinically relevant antiepileptic drugs in vivo versus in vitro. This will be performed by measuring the penetration of drugs into the naive rodent brain compared to DIV-BBB established with control (i.e., non-multiple drug resistant) blood-brain barrier endothelial and glial cells. 2) To compare the permeability value of antiepileptic drugs measured directly in serum and brain of pharmacoresistant patients or in our in vitro model comprising of cells from comparable multiple drug resistant subjects. 3) To develop an automated drug dosing and sampling system to allow for automated control, data collection and analysis on large number of modules at the same time. We will also assess the feasibility of the use of a microdialysis probe for on line sampling which will overcome the need of radio- or fluorescent labeled compounds for permeability studies. 4) To implement a new design of the trans-endothelial electrical resistance measurement system in order to allow for the measurement of the impedance of BBB by the use of a ramp of different frequencies. We propose to develop and validate an improved dynamic in vitro blood-brain barrier (DIV-BBB) model that reproduces the functional characteristics of the BBB in vivo, features higher predictability, and is fully scalable and customizable. As such, it will be perfectly suited for extensive pharmacological and physiological studies. In addition, the use of DIV-BBB can be extended to research applications in Neuroscience. The DIV- BBB can be successfully used to better understand the principles of brain drug delivery, to acquire relevant knowledge of the BBB anatomy and physiology, and to study the mechanism of endothelial cells differentiation into a BBB phenotype. Considering these realistic premises, the DIV-BBB can be used to study the effects of pathophysiological conditions and facilitate the design of novel CNS drugs and therapeutical approaches targeting the brain with clear benefits for the patients.
描述(由申请人提供):血脑屏障(BBB)对于诸如药物输送,涉及BBB功能障碍的慢性神经系统疾病的发病机理(例如脑瘤,缺血,缺血,低氧,脑水肿,多发性硬化症和脑膜炎)以及与生物剂有关的问题至关重要。由于BBB有选择地(通过特定的运输机制)排除了大多数血源性物质和异种生物学,而无法进入大脑,从而保护其免受全身影响。不幸的是,为保护大脑免受潜在危险物质而开发的生物防御系统也可能有助于在治疗多种CNS疾病(例如药物难治性癫痫或可怕的脑肿瘤)期间称为多种耐药性(MDR)的现象。制药公司每年都花费数百万美元来制定替代的药物策略,以绕过脑实质的屏蔽,并使用体内或BBB的体外模型研究新的治疗方法,其中许多最终无法正常工作。理性的CNS药物设计不能完全,仅仅依赖于推定的神经疗法的物理化学特性,因为仅亲脂性是药物渗透到中枢神经系统中的差的预测指标。对于三种大型CNS药物,抗肿瘤,抗病毒药和抗癫痫药的大型家族尤其如此。在包括啮齿动物在内的小动物中进行的研究不能直接推断到人体组织。该实验室和其他实验室的初步结果令人信服地证明,由于临床药理学模型存在缺陷,使用啮齿动物脑内皮细胞和一般的内皮细胞系。我们建议:1)比较体内与体外临床相关抗癫痫药的渗透率值。这将通过测量药物对对照(即非多种药物耐药性)血脑屏障内皮和神经胶质细胞的DIV-BBB的渗透来进行。 2)比较直接在药物治疗患者的血清和大脑中或我们的体外模型中,抗癫痫药的渗透率值,该药物由可比的多种耐药性受试者组成的细胞组成。 3)开发自动药物剂量和采样系统,以同时对大量模块进行自动控制,数据收集和分析。我们还将评估使用微透析探针进行线样采样的可行性,这将克服对渗透率研究的无线电或荧光标记化合物的需求。 4)实施跨内皮电阻测量系统的新设计,以便通过使用不同频率的坡道来测量BBB的阻抗。我们建议开发和验证改进的动态体外血脑屏障(DIV-BBB)模型,该模型可再现BBB在体内的功能特性,具有更高的可预测性,并且具有完全可扩展性且可自定义。因此,它将非常适合广泛的药理和生理研究。此外,DIV-BBB的使用可以扩展到神经科学中的研究应用。可以成功地使用Divbbb,以更好地理解脑药物递送的原理,获取有关BBB解剖学和生理学的相关知识,并研究内皮细胞的机制,将内皮细胞的机理分化为BBB表型。考虑到这些现实的前提,DIV-BBB可用于研究病理生理状况的影响,并促进新型中枢神经系统药物的设计和针对大脑的治疗方法,对患者有明显的益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDWARD J. RAPP其他文献
EDWARD J. RAPP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDWARD J. RAPP', 18)}}的其他基金
Side-by-side comparison of blood-brain barrier models
血脑屏障模型的并排比较
- 批准号:
7153449 - 财政年份:2006
- 资助金额:
$ 50.49万 - 项目类别:
Side-by-side comparison of blood-brain barrier models
血脑屏障模型的并排比较
- 批准号:
7503375 - 财政年份:2006
- 资助金额:
$ 50.49万 - 项目类别:
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 50.49万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10522665 - 财政年份:2022
- 资助金额:
$ 50.49万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10654014 - 财政年份:2022
- 资助金额:
$ 50.49万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10508956 - 财政年份:2022
- 资助金额:
$ 50.49万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10662561 - 财政年份:2022
- 资助金额:
$ 50.49万 - 项目类别: