Sustainable Maritime Transportation Network considering Sulphur Fuel Regulation - Application of Advanced Machine Learning and Optimization

考虑硫燃料监管的可持续海上运输网络 - 先进机器学习和优化的应用

基本信息

  • 批准号:
    2885828
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The International Maritime Organization (IMO) highlighted immediate actions to mitigate carbon emission growth, a major factor in climate change. The United Nations Conference on Trade and Development has stated that international shipping carries 80% of world trade making a significant contribution to the rise in carbon dioxide emissions. Zis et al. (2019) highlighted that in 2015, many vessels used bunker fuel oil, which contributes 3.5% to global Sulphur oxides emissions, thereby significantly increasing the environmental and health problems (heart and lung diseases) around populated coastal areas. Rising atmospheric concentrations of carbon dioxide and sulphur oxides are causing oceans to absorb more of the gases and become more acidic leading to a significant impact on coastal and marine ecosystems. Consequently, IMO 2020 adopted strict regulations for emission control areas (ECAs), where ships must use fuel oil with a Sulphur content of no more than 0.1%. Furthermore, for mitigating the emission from maritime logistics, existing literature has highlighted the adoption of various measures such as carbon taxes, slow steaming policy and bunkering strategies. Adoption of such measures depends on fuel prices and a major issue for shipping companies is the fluctuation in fuel prices at (and between) ports.Existing literature on maritime logistics that focuses on predicting fuel prices is still at nascent stage, and there is a gap in the area of developing advanced machine learning algorithms that predict bunker fuel prices. This project will involve working with the partner company, to develop a machine learning model for fuel prices prediction at port using a dataset containing data on CO2 emissions and bunker fuel prices. Past literature has overlooked the IMO 2020 regulations related to the use of low-sulphur fuel oil for bunkering purpose. Therefore, the current project would facilitate bunkering decisions (i.e. choosing the refuelling port and determining the refuelling amount) of the shipping companies considering the IMO regulations by developing a multi-objective optimization model (mixed integer linear programming model) for minimizing the bunkering cost and emissions. Several authors have highlighted the need for considering slow steaming policy (or, speed optimization) and accurate fuel price information at the ports for adequately perform the bunker fuel management. Therefore, the current research project aims to consider bunker price information obtained from the machine learning model and integrate it within the multi-objective optimization model for determining the bunkering strategies while minimizing the carbon and sulphur emissions. The following are indicative research questions:1. Can we develop a reliable predictive model for estimating bunker fuel prices and CO2 emissions at ports?2. Can we propose a holistic formal multi-objective optimization model (mixed integer linear programming model) to tune maritime transportation networks? Such a model would need to comprise several objectives including ones related to sustainability, costs, and emissions, while capturing sensible constraints and decision variables to be tuned. 3. How can we integrate the insights pertaining to bunker price information obtained from the predictive model with the optimisation model for determining the bunkering strategies while facilitating sulphur and carbon emission reduction within the maritime transportation network?4. What would be robust predictive models and multi-objective models to optimize the problem?
国际海事组织(IMO)强调立即采取行动减缓碳排放增长,这是气候变化的一个主要因素。联合国贸易和发展会议指出,国际航运承载着世界贸易的80%,对二氧化碳排放量的增加做出了重大贡献。齐斯等人。 (2019)强调,2015年,许多船舶使用船用燃油,占全球硫氧化物排放量的3.5%,从而显着增加了人口稠密的沿海地区周围的环境和健康问题(心脏病和肺部疾病)。大气中二氧化碳和硫氧化物浓度的上升导致海洋吸收更多的气体并变得更加酸性,从而对沿海和海洋生态系统产生重大影响。因此,IMO 2020 对排放控制区(ECA)采取了严格的规定,船舶必须使用硫含量不超过 0.1% 的燃油。此外,为了减少海运物流的排放,现有文献强调了采取各种措施,如碳税、慢航政策和加油策略。是否采用此类措施取决于燃油价格,而航运公司面临的一个主要问题是港口(以及港口之间)燃油价格的波动。现有的以预测燃油价格为重点的海运物流文献仍处于起步阶段,存在差距。在开发预测船用燃料价格的先进机器学习算法领域。该项目将涉及与合作伙伴公司合作,使用包含二氧化碳排放和船用燃料价格数据的数据集开发用于港口燃料价格预测的机器学习模型。过去的文献忽略了 IMO 2020 有关使用低硫燃油进行加油的规定。因此,本项目将通过开发多目标优化模型(混合整数线性规划模型)来最小化加油成本和考虑IMO法规,促进航运公司的加油决策(即选择加油港口和确定加油量)。排放。几位作者强调需要考虑慢速航行政策(或速度优化)和港口准确的燃油价格信息,以充分执行船用燃油管理。因此,当前的研究项目旨在考虑从机器学习模型获得的燃油价格信息,并将其集成到多目标优化模型中,以确定燃油策略,同时最大限度地减少碳和硫排放。以下是指示性研究问题: 1.我们能否开发一个可靠的预测模型来估计船用燃料价格和港口二氧化碳排放量?2。我们能否提出一个整体形式化的多目标优化模型(混合整数线性规划模型)来调整海上运输网络?这样的模型需要包含多个目标,包括与可持续性、成本和排放相关的目标,同时捕获合理的约束和需要调整的决策变量。 3. 我们如何将从预测模型中获得的有关燃油价格信息的见解与优化模型相结合,以确定加油策略,同时促进海上运输网络内硫和碳排放的减少?4.什么是稳健的预测模型和多目标模型来优化问题?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于预设轨迹约束的海上风电工程船智能控制理论方法
  • 批准号:
    52301417
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海上风电多端柔性直流送出系统稳定机理及高效协调控制方法研究
  • 批准号:
    52377119
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
海上通道安全视阈下中国海外战略支点体系构建、演变和治理研究
  • 批准号:
    42371175
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于DEM-FEM耦合方法的一体化海上风机冰激振动模式研究
  • 批准号:
    52301311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑偏心影响海上风机导管架基础抗冲击理论分析、破坏机理与设计方法研究
  • 批准号:
    52378304
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Strategy and policy design towards zero-emission maritime transportation system by interactive simulation
通过交互式模拟进行零排放海上运输系统的战略和政策设计
  • 批准号:
    22H01693
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NNA Track 1: Collaborative Research: Maritime transportation in a changing Arctic: Navigating climate and sea ice uncertainties
NNA 第 1 轨道:合作研究:不断变化的北极的海上运输:应对气候和海冰的不确定性
  • 批准号:
    1928119
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Decarbonisation of Maritime Transportation: A Return to Commercial Sailing
海上运输脱碳:回归商业航行
  • 批准号:
    107138
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
NNA Track 1: Collaborative Research: Maritime transportation in a changing Arctic: Navigating climate and sea ice uncertainties
NNA 第 1 轨道:合作研究:不断变化的北极的海上运输:应对气候和海冰的不确定性
  • 批准号:
    1928112
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Planning and Evaluation of Land and Sea Intermodal Transportation at Super Wide Area Disaster
超广域灾害海陆联运规划与评估
  • 批准号:
    19K04864
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了