Cell engineering to enhance biohydrogen production from agricultural waste

细胞工程提高农业废弃物的生物氢产量

基本信息

  • 批准号:
    2878511
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Hydrogen is considered one of the most promising substitutes for fossil fuels, being a source of green energy that could potentially lead to decarbonization. Its combustion only delivers water and heat energy as reaction products, making it a pollution free alternative. Dark fermentation (DF) is a biological hydrogen production method in which under anaerobic conditions and absence of light, microorganisms break down complex organic matter into simpler compounds producing biohydrogen and volatile fatty acids (VFAs). Given the high cost of using pure carbohydrates as a substrate on a commercial scale, there has been a lot of interest in biohydrogen production using renewable and less expensive feedstocks. Over 220 billion tonnes of agricultural waste are generated yearly, making it an accessible renewable resource to use as feedstock for dark fermentation. Therefore, using agricultural waste for biohydrogen production is a circular economy approach in which organic waste is treated to produce renewable energy, making the dark fermentation of these substrates both environmentally and economically compelling.Theoretically, a maximum of 12 mol of H2 can be obtained from the complete oxidation of one mole of glucose. However, only 4 mol of H2 can be obtained per mole of glucose through dark fermentation, with acetate and CO2 as the other fermentation end products, and this yield is obtained when the particle pressure of H2 is kept adequately low. Theoretically, during the acidogenesis for fermentative hydrogen generation, one-third of carbon from glucose is broken down into hydrogen (H2) and carbon dioxide (CO2), while the remaining two-thirds remain soluble as VFAs in the and less than 20% of the chemical oxygen demand (COD) is removed. Nowadays, the yield of biohydrogen production by dark fermentation is between 1.2 and 2.3 mol H2/mol hexose, which is only 30-50% of the maximum theoretical production of 4 mol H2/mol glucose.The low yield of H2 by biohydrogen production methods is one of the major challenges that needs to be addressed before it can be used for industrial purpose. In this project, we will look into which strains, feedstocks and conditions are the most promising for hydrogen production. However, due to the great potential of dark fermentation but low efficiency, the conventional approach is not enough. The accessibility of huge sequenced genomes, functional genomic studies, the development of in silico models at the genome scale, metabolic pathway reconstruction, and synthetic biology approaches, has risen during the last years. This bioinformatic and biotechnological approaches hold the key for augmentation of biohydrogen production.The aim of this project is to enhance biohydrogen production from agricultural waste through metabolic engineering of the metabolic pathways involved in dark fermentation. The following questions will be investigated during this project:(1) Which strain and biomass feedstocks are more promising for biohydrogen production? For this, we will test bacterial strains reported in the literature (Shewanella oneidensis MR-1) and novel strains isolated from extreme environments. Different lignocellulosic materials from agricultural waste (willow, hay, wheat and barley) will be tested as feedstock.(2) Which are the key points in the metabolic pathways that lead to biohydrogen production during dark fermentation? A multi-omics approach, considering genomics, transcriptomics, proteomics and metabolomics, will be taken to unravel these key points. Bioinformatics and experimental data will be used. (3) How can this process be optimized? To redirect the carbons from the agricultural waste into biohydrogen production, synthetic biology techniques will be used to perform metabolic engineering in the selected strain to favour the metabolic pathway leading to increased hydrogen production. Bioprocessing studies will be done using Design of Experiments (DoE) to explore the most optimal conditio
氢被认为是化石燃料最有前途的替代品之一,是可能导致脱碳化的绿能来源。它的燃烧只能将水和热能作为反应产物,使其成为无污染的替代品。深色发酵(DF)是一种生物氢生产方法,在这种方法中,在厌氧条件下,没有光,微生物将复杂的有机物分解成产生生物氢和挥发性脂肪酸(VFAS)的更简单化合物。考虑到在商业规模上使用纯碳水化合物作为基材的高成本,使用可再生和便宜的原料对生物氢的产生引起了很多兴趣。每年产生超过2200亿吨的农业废物,使其成为可访问的可再生资源,可用作黑暗发酵的原料。因此,将农业废物用于生物氢生产是一种循环经济学方法,在这种方法中,有机废物被治疗以产生可再生能源,从而使这些底物的深色发酵在环境和经济上引人注目。从理论上讲,最多可以从一摩尔一摩尔的葡萄糖氧化中获得12摩尔的H2。但是,每摩尔的葡萄糖只能通过黑暗发酵获得4摩尔的H2,乙酸和CO2作为其他发酵端产物,当H2的颗粒压力保持充分低时,可以获得此产率。从理论上讲,在发酵氢产生的酸中,来自葡萄糖的碳的三分之一被分解为氢(H2)和二氧化碳(CO2),而其余的三分之二则在溶解中作为VFA,而较小的化学氧需求(COD)中的VFA被溶解。如今,黑暗发酵产生生物氢的产量在1.2至2.3 mol H2/mol己糖中,仅是4 mol H2/mol葡萄糖的最大理论生产的30-50%。生物氢生产方法的低收益率低是在用于工业目的之前需要解决的主要挑战之一。在这个项目中,我们将研究哪些菌株,原料和条件是生产氢的最有希望的。但是,由于黑暗发酵的潜力但效率低,传统方法还不够。在过去的几年中,巨大测序基因组,功能基因组研究,在基因组量表上的发展,代谢途径重建和合成生物学方法的可及性在过去几年中有所增加。这种生物信息学和生物技术方法是增强生物氢生产的关键。该项目的目的是通过对黑暗发酵涉及的代谢途径的代谢工程来增强农业废物的生物氢化产量。在此项目期间将研究以下问题:(1)哪些菌株和生物量原料对生物氢的产生更有希望?为此,我们将测试文献中报道的细菌菌株(Shewanella Oneidensis MR-1)和从极端环境中分离出来的新型菌株。农业废物(柳树,干草,小麦和大麦)的不同木质纤维素材料将被测试为原料。(2)哪些是代谢途径中导致黑暗发酵过程中生物氢化的关键点?考虑基因组学,转录组学,蛋白质组学和代谢组学的一种多态方法将采用这些关键点。将使用生物信息学和实验数据。 (3)如何优化此过程?为了将农业废物从生物氢化产生重新定向,合成生物学技术将用于在选定菌株中进行代谢工程,以有利于代谢途径,从而导致氢产生增加。生物处理研究将使用实验设计(DOE)进行,以探索最佳的Conditio

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Metal nanoparticles entrapped in metal matrices.
  • DOI:
    10.1039/d1na00315a
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
  • DOI:
    10.1007/978-3-662-55754-9_2
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
  • DOI:
    10.3969/j.issn.1674-764x.2010.02.010
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于 CRISPR-dCpf1a/i 技术工程化谷氨酸棒杆菌细胞壁提高重组蛋白分泌产量
  • 批准号:
    22378167
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基因工程敲减IL-6/CD40L的CAR-T细胞在复发/难治性急性B淋巴细胞白血病治疗中提高安全性的机制研究
  • 批准号:
    82200249
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基因工程敲减IL-6/CD40L的CAR-T细胞在复发/难治性急性B淋巴细胞白血病治疗中提高安全性的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基因组复制工程辅助的连续进化技术提高蓝细菌高pH耐受性的研究
  • 批准号:
    31770092
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
系统开发代谢网络模型及预测算法促进解脂耶氏酵母油脂合成的改造提高
  • 批准号:
    21776081
  • 批准年份:
    2017
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enhance myogenic transdifferentiation efficiency using engineering approaches
利用工程方法提高生肌转分化效率
  • 批准号:
    10647491
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Strategies to Enhance Engineered Heart Tissue Based Myocardial Repair
增强基于工程心脏组织的心肌修复的策略
  • 批准号:
    10581419
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of strategies to enhance titin (TTN) expression and treat dilated cardiomyopathy caused by TTN haploinsufficiency
开发增强肌联蛋白 (TTN) 表达并治疗 TTN 单倍体不足引起的扩张型心肌病的策略
  • 批准号:
    10662742
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multidimensional antibody engineering to enhance the potency and breadth of a betacoronavirus medical countermeasure
多维抗体工程可增强β冠状病毒医学对策的效力和广度
  • 批准号:
    10699866
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Removing sialic acid ligands of CD28 to enhance T cell cancer immunotherapy
去除CD28的唾液酸配体以增强T细胞癌症免疫治疗
  • 批准号:
    10668007
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了