Machine Learning Approach to Identify Environmentally Friendly Alternatives to SF6 for Electricity Networks
用于识别电力网络 SF6 环保替代品的机器学习方法
基本信息
- 批准号:2856914
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The use of sulphur hexafluoride (SF6) in modern transmission and distribution networks needs to be phased out as it is a highly potent greenhouse gas. Annually more than 8000 tonnes of SF6 are emitted into the atmosphere and 80% of it is used in the power industry, therefore its use in gas insulated equipment must be reduced as soon as possible to avoid the negative contribution to the climate change. However, SF6 has great electrical insulation properties which makes finding a substitution challenging. Due to a high number of existing gas combinations, it is impractical to perform high voltage testing on all mixtures. The machine learning approaches are known to be applied to determine the electrical properties of gases in other research, but the generation of mixtures has not been investigated yet. Hence, the intent of this project is to develop a set of tools that will narrow down the search space for SF6 alternatives with the aid of machine learning. Based on the known electrical properties of gases, their simulation and/or experimental data, machine learning will be able to find the potential candidates matching required operational properties. Then the identified gases can be further tested in a controlled laboratory environment to verify the results. Machine learning can also help fine tune a mixture of known gases for optimal performance. This approach will significantly speed up the identification process and minimise the time to market. The proposed outputs will be achieved through a modular approach to software development. Firstly, the literature about machine learning and other computational approaches will be reviewed in order to select applicable methods both for gas properties prediction and mixture generation. Secondly, a dataset of compounds with the properties of interest will be gathered to train and test the algorithms. With the dataset in place, the software for gas mixture optimisation based on their evaluated operational and environmental parameters will be developed. Lastly, the results of the main software will be tested in the HV laboratory to verify the suitability of identified gas mixtures and to fine-tune the algorithms. Besides that, the prediction of the individual compound properties from molecular descriptors obtained via first principles calculations such as density functional theory will be explored. This will make a large computational screening approach possible which will filter out unusable compounds and highlight potential SF6 replacement candidates.
现代输配电网络中六氟化硫 (SF6) 的使用需要逐步淘汰,因为它是一种强效温室气体。每年有8000多吨SF6排放到大气中,其中80%用于电力工业,因此必须尽快减少其在气体绝缘设备中的使用,以避免对气候变化造成负面影响。然而,SF6 具有出色的电绝缘性能,这使得寻找替代品具有挑战性。由于现有气体组合数量较多,对所有混合物进行高压测试是不切实际的。众所周知,机器学习方法在其他研究中可用于确定气体的电特性,但混合物的生成尚未得到研究。因此,该项目的目的是开发一套工具,借助机器学习缩小 SF6 替代品的搜索空间。根据气体的已知电特性、其模拟和/或实验数据,机器学习将能够找到与所需操作特性相匹配的潜在候选气体。然后可以在受控实验室环境中进一步测试所识别的气体以验证结果。机器学习还可以帮助微调已知气体的混合物以获得最佳性能。这种方法将显着加快识别过程并最大限度地缩短上市时间。拟议的产出将通过软件开发的模块化方法来实现。首先,将回顾有关机器学习和其他计算方法的文献,以便选择适用于气体性质预测和混合物生成的方法。其次,将收集具有感兴趣特性的化合物数据集来训练和测试算法。数据集到位后,将开发基于评估的操作和环境参数的气体混合物优化软件。最后,主软件的结果将在高压实验室进行测试,以验证识别的气体混合物的适用性并对算法进行微调。除此之外,还将探索通过密度泛函理论等第一原理计算获得的分子描述符来预测单个化合物的性质。这将使大型计算筛选方法成为可能,从而过滤掉不可用的化合物并突出潜在的 SF6 替代候选物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Cryptococcal granulomas of basal ganglia due to Cryptococcus neoformans in a cat: a case report and literature review.
- DOI:
10.1292/jvms.22-0514 - 发表时间:
2023-03-30 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Cloud transition across the daily cycle illuminates model responses of trade cumuli to warming.
- DOI:
10.1073/pnas.2209805120 - 发表时间:
2023-02-21 - 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
- DOI:
10.1111/jsr.13679 - 发表时间:
2022-12 - 期刊:
- 影响因子:4.4
- 作者:
- 通讯作者:
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
- DOI:
10.3390/membranes12121262 - 发表时间:
2022-12-13 - 期刊:
- 影响因子:4.2
- 作者:
- 通讯作者:
Correction for Paulson et al., Embryonic microRNAs are essential for bovine preimplantation embryo development.
- DOI:
10.1073/pnas.2300306120 - 发表时间:
2023-02-21 - 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于机器学习的蚀变矿物勘查方法与应用研究:以西藏岗讲矿床为例
- 批准号:42363009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于融合物理知识机器学习方法的圆柱浮式阵列水动力特性评估初探
- 批准号:12302318
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
- 批准号:42377385
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习的分布式输入输出的控制方法及实验应用
- 批准号:12302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
- 批准号:22308228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Doctoral Dissertation Research: Predicting the location of hominin cave fossil sites with a machine learning approach
博士论文研究:利用机器学习方法预测古人类洞穴化石遗址的位置
- 批准号:
2341328 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Refining oxytocin therapy for pain: context is key
完善催产素治疗疼痛的方法:背景是关键
- 批准号:
10595113 - 财政年份:2023
- 资助金额:
-- - 项目类别: