The role of giant impacts in the formation of the outer solar system and exosystems

巨大撞击在外太阳系和系外系统形成中的作用

基本信息

  • 批准号:
    2779906
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Project Background:Giant impacts (collisions between planet-sized bodies) are the most violent events in planet formation. For a few hours, collisions that form greater than Earth-mass bodies release more energy than the Sun. Large fractions of the icy and/or rocky mantles of the colliding bodies are melted and vaporised, and the huge torques exerted can leave the post-impact body rapidly rotating. The mass of the largest body may either increase or decrease, depending on the amount of material ejected from the system. Impacts can fundamentally alter the trajectory of a planet's evolution, as the ratios of atmosphere, crust, mantle and core all change and systems of moons can be formed. For example, giant impacts are thought to be responsible for the high obliquity of Uranus, the high density of Mercury, and the formation of Earth's Moon.The thermal and rotational states of post-impact bodies are so extreme that a significant fraction of impacts produce synestias, a recently theorisedclass of planetary object (Lock & Stewart, 2017). Synestias are bodies that exceed the corotation limit, defined as the angular momentum at which a planet's equatorial velocity equals that of a circular Keplerian orbit. Post-impact synestias are typically many times larger than cooler planets and form donut-shaped structures (Figure1). The different dynamical and thermodynamical states of synestias have significant implications for moon formation, core formation, and the distribution of volatiles within planets.Only a limited record of giant impacts remains in our solar system, but exoplanet observations are revolutionising this field. Recent space telescopes, such as Kepler and TESS, along with multiple ground-based surveys, are dramatically increasing the number of known exoplanets. Exosystems have a range of architectures and host planets with widely varying densities, and so bear witness to the many possible outcomes of giant impacts and planet formation in general. Furthermore, as we find more and more exoplanets and begin to observe planets around younger stars, we may soon detect planetary bodies in the immediate aftermath of giant impacts.Studies of giant impacts, with which these observations are interpreted, have largely focused on the impacts expected during formation of our inner solar system. There has been little work on collisions between more massive planets, even though such impacts could have helped shape the outer solar system. In addition, ours may not be a typical planetary system. It lacks the most common planets found around other stars: super-Earths and mini-Neptunes (planets with radii between Earth and Neptune). Many of these planets have large ice (e.g., water) and/or gas fractions. Few studies have explored impacts between more massive terrestrial and/or volatile-richbodies and, at present, we do not understand the outcome of what are likely the most frequent planetary collisions in the universe.Project Aims and MethodsThis project will explore how collisions shape the planets in our solar system and in exosystems. Using state-of-the-artgiantimpact simulations, the successful candidatewill investigate the range of dynamic and thermodynamic outcomes of collisions between water-rich bodies, and develop 'scaling laws' that relate the outcomes to the impact parameters. Although generally a common occurrence, the rates and energies of impacts vary between different planet formation models. By analysing the frequency and parameters of impacts in each scenario, the student will ascertain how giant impacts would sculpt planetary systems in different cases. Furthermore, by determining the observational signatures of post-impact bodies and synestias, the project will aim toprovide the tools necessary to identify...
项目背景:巨大的撞击(行星大小的天体之间的碰撞)是行星形成过程中最剧烈的事件。在几个小时内,形成比地球质量更大的天体的碰撞释放出比太阳还多的能量。碰撞体的大部分冰和/或岩石地幔被熔化和蒸发,所施加的巨大扭矩可以使撞击后的物体快速旋转。最大物体的质量可能会增加或减少,具体取决于从系统中喷射的材料量。撞击可以从根本上改变行星演化的轨迹,因为大气、地壳、地幔和地核的比例都会发生变化,卫星系统也会形成。例如,巨大的撞击被认为是造成天王星的高倾角、水星的高密度以及月球的形成的原因。撞击后天体的热状态和旋转状态非常极端,以至于很大一部分撞击会产生synestias,最近理论化的一类行星物体(Lock & Stewart,2017)。联内星是超过共转极限的天体,共转极限定义为行星赤道速度等于圆形开普勒轨道的角动量。撞击后的联丝体通常比温度较低的行星大很多倍,并形成环形结构(图1)。联星体的不同动力学和热力学状态对月球形成、核心形成以及行星内挥发物的分布具有重大影响。我们的太阳系中仅保留了有限的巨大撞击记录,但系外行星观测正在彻底改变这一领域。最近的太空望远镜,例如开普勒和苔丝,以及多次地面调查,正在急剧增加已知系外行星的数量。外系统具有一系列结构和密度差异很大的宿主行星,因此见证了巨大撞击和行星形成的许多可能结果。此外,随着我​​们发现越来越多的系外行星并开始观察年轻恒星周围的行星,我们可能很快就会在大撞击之后立即发现行星体。对这些观测结果进行解释的大撞击研究主要集中在撞击上预计在我们的内太阳系形成期间。尽管这种撞击可能有助于塑造外太阳系,但关于更大质量行星之间碰撞的研究却很少。此外,我们的行星系统可能不是一个典型的行星系统。它缺乏在其他恒星周围发现的最常见的行星:超级地球和迷你海王星(半径在地球和海王星之间的行星)。许多这些行星都有大量的冰(例如水)和/或气体成分。很少有研究探索更大质量的地球和/或富含挥发性天体之间的影响,目前,我们还不了解宇宙中最频繁的行星碰撞的结果。项目目标和方法该项目将探索碰撞如何塑造地球我们太阳系和系外系统中的行星。使用最先进的巨型撞击模拟,成功的候选人将研究富含水体之间碰撞的动力学和热力学结果的范围,并制定将结果与撞击参数联系起来的“缩放定律”。尽管通常发生的情况很常见,但不同行星形成模型的撞击速度和能量有所不同。通过分析每种情况下撞击的频率和参数,学生将确定巨大的撞击在不同情况下如何塑造行星系统。此外,通过确定撞击后物体和联体的观测特征,该项目旨在提供必要的工具来识别……

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于白色瘤胃球菌的母婴对话在妊娠期糖尿病巨大儿脂肪积聚中的改善作用
  • 批准号:
    82371697
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
巨大芽孢杆菌NCT-2菌剂对次生盐渍化土壤养分的改良机理研究
  • 批准号:
    32301425
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内生巨大芽孢杆菌B6促进Pb在杞柳根-茎转运的作用机制
  • 批准号:
    32301550
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
根际巨大普里斯特氏菌多肽调控的水稻抗盐促生生理代谢级联机制研究
  • 批准号:
    32371571
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
巨大芽孢杆菌强化青葙修复镉污染土壤的根际效应与机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of giant impacts in the formation of the outer solar system and exosystems
巨大撞击在外太阳系和系外系统形成中的作用
  • 批准号:
    2815106
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
HIV Infection and Latency In Astrocytes
HIV 感染和星形胶质细胞潜伏期
  • 批准号:
    9529614
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
HIV Infection and Latency In Astrocytes
HIV 感染和星形胶质细胞潜伏期
  • 批准号:
    9334169
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
GFAP as a novel HIV/neuroAIDS biomarker
GFAP 作为一种新型 HIV/神经艾滋病生物标志物
  • 批准号:
    8245166
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
GFAP as a novel HIV/neuroAIDS biomarker
GFAP 作为一种新型 HIV/神经艾滋病生物标志物
  • 批准号:
    8098194
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了