Characterisation of Crystalline Materials through Imaging, Image Processing and Machine Learning for 3D Shape Description
通过成像、图像处理和机器学习来表征晶体材料的 3D 形状描述
基本信息
- 批准号:2748332
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The crystal growth of organic materials is of significant importance within the speciality and fine chemical industries. This reflects its utility in materials purification and its use in preparing a wide range of compounds which have the well-defined crystal size, shape and polymorphic form needed for optimal product performance. The latter is important e.g., in ensuring the reproducible dissolution and stability behaviour needed to maintain the safety and efficacy of ingredients within formulated products. The inherent complexity of organic fine chemicals directly impacts on their physical chemical particulate properties, notably their crystallisation in low symmetry crystallographic structures with anisotropic morphologies and surface properties. Changes to, or variability in, these properties can affect downstream performance of the material, e.g., bioavailability, powder handling, stability and manufacturability. Impurities, that form solid solutions are known to influence morphology (shape as well as surface properties). Current particle sizing measurements can be over-simplistic in terms of shape characterisation being focussed mostly on spherical particles. Such methods do not reflect crystal morphologies important in fine chemicals where different crystal faces can have different surface chemistry and hence different intermolecular interactions with their processing environments. Currently, there is a critical gap in capability to be able to relate molecular structure to performance of the same material in particulate form. This knowledge gap has led to increasing interest in fusing molecular crystallographic data, simulated properties and artificial intelligence (AI) approaches. The aim of this project is to address the above need by applying digital AI-enabled technology to develop morphologically-based shape descriptors for precisely characterising crystalline particulates in 3D. To do this machine learning will be applied to map the images from in-process microscopy to a description of 3D crystal shape and functional properties. The project will help enable the design of organic crystalline materials to a much tighter particle size/shape specification with more consistency and less variability. The project will explore the impact of process impurities and aim to model the impact of solid solutions on crystal growth and surface properties. The student will integrate the crystallisation technology with AI/machine learning for crystallisation process engineering with a focus on 3D crystal characterisation. The project aims encompass 1. Intensive literature review 2. Development and commissioning of a new in-situ cell for the dynamic characterisation of crystal morphology and growth 3. Experimental studies of the morphological characterisation and crystal growth kinetics collecting crystal images prepared under varying process conditions 4. Using molecular and crystallographic modelling to characterise in-situ microscopy data integrating this with AI/machine learning techniques 5. Extending approaches to online imaging for monitoring the dynamics of the growth of a population of crystals during a batch processing. The project is centred around the areas of particle technology and AI/machine learning with experts within the supervisory team in both areas. This project will be experimentally intensive with making use of the crystallisation laboratories at Leeds which are well equipped with e.g., in-situ microscopes, crystallisation systems (1mL to 20L), solid-state characterisation (Keyence Digital Microscope, IGC/GC, DSC, TGA, FTIR, UV-vis, Morphologi G3 etc). Support by the project's industrial partner, Syngenta, will provide placement opportunities for industrial case studies.
有机材料的晶体生长在特种和精细化工行业中具有重要意义。这反映了它在材料纯化中的实用性以及在制备各种化合物中的用途,这些化合物具有最佳产品性能所需的明确的晶体尺寸、形状和多晶型。后者很重要,例如,确保维持配方产品中成分的安全性和有效性所需的可重复溶出度和稳定性行为。有机精细化学品固有的复杂性直接影响其物理化学颗粒性质,特别是其在具有各向异性形态和表面性质的低对称晶体结构中的结晶。这些特性的变化或变化可能会影响材料的下游性能,例如生物利用度、粉末处理、稳定性和可制造性。众所周知,形成固溶体的杂质会影响形态(形状以及表面性质)。目前的颗粒尺寸测量在形状表征方面可能过于简单化,主要集中在球形颗粒上。这些方法不能反映精细化学品中重要的晶体形态,其中不同的晶面可能具有不同的表面化学性质,因此与其加工环境具有不同的分子间相互作用。目前,将分子结构与颗粒形式的相同材料的性能联系起来的能力存在重大差距。这种知识差距导致人们对融合分子晶体学数据、模拟特性和人工智能 (AI) 方法越来越感兴趣。该项目的目的是通过应用数字人工智能技术来开发基于形态的形状描述符,以精确表征 3D 晶体颗粒,从而满足上述需求。为此,将应用机器学习将过程中显微镜图像映射到 3D 晶体形状和功能特性的描述。该项目将有助于使有机晶体材料的设计达到更严格的粒度/形状规格,并且具有更高的一致性和更少的可变性。该项目将探索工艺杂质的影响,旨在模拟固溶体对晶体生长和表面性质的影响。该学生将把结晶技术与人工智能/机器学习相结合,进行结晶工艺工程,重点关注 3D 晶体表征。该项目的目标包括 1. 深入的文献综述 2. 开发和调试一种新的原位电池,用于晶体形态和生长的动态表征 3. 形态表征和晶体生长动力学的实验研究,收集在不同工艺条件下制备的晶体图像4. 使用分子和晶体学建模来表征原位显微镜数据,并将其与人工智能/机器学习技术相结合。 5. 扩展在线成像方法,用于监测批处理过程中晶体群体生长的动态。该项目以粒子技术和人工智能/机器学习领域为中心,监督团队中有这两个领域的专家。该项目将利用利兹的结晶实验室进行密集实验,这些实验室配备了原位显微镜、结晶系统(1mL 至 20L)、固态表征(Keyence 数码显微镜、IGC/GC、DSC、 TGA、FTIR、UV-vis、Morphologi G3 等)。该项目的工业合作伙伴先正达的支持将为工业案例研究提供实习机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Interactive comment on “Source sector and region contributions to BC and PM 2 . 5 in Central Asia” by
关于“来源部门和地区对中亚 BC 和 PM 5 的贡献”的互动评论。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition
采用动态模态分解对流过受迫振荡圆柱体的流进行涡流脱落分析
- DOI:
10.1063/5.0153302 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Observation of a resonant structure near the D + s D − s threshold in the B + → D + s D − s K + decay
观察 B – D s D – s K 衰减中 D s D – s 阈值附近的共振结构
- DOI:
10.1103/physrevd.102.016005 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 OBSERVATIONS OF RAPID DISK-JET INTERACTION IN THE MICROQUASAR GRS 1915+105
接受《天体物理学杂志》预印本排版,使用 L ATEX 样式 emulateapj v. 6/22/04 观测微类星体 GRS 中的快速盘射流相互作用 1915 105
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The Evolutionary Significance of Phenotypic Plasticity
表型可塑性的进化意义
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
- 批准号:
2908923 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
- 批准号:
2889655 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
相场模拟铁电材料电致结晶相变微观机制以提升电卡制冷效率
- 批准号:52372100
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
跨季储热系统气泡界面激发过冷相变材料结晶及释热强化
- 批准号:52308118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
功能化硅基材料强化微电解去除循环水硬度的诱导结晶机制
- 批准号:52300100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
团簇基功能材料的仿粘土矿物结晶物理化学制备研究
- 批准号:52220105010
- 批准年份:2022
- 资助金额:250 万元
- 项目类别:国际(地区)合作与交流项目
热塑性复合材料结构钻削力热行为及孔周结晶主动调控方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Elucidation of Stress-Strain Response Dominant Factors in Crystalline Materials by Multiscale Strain Analysis
通过多尺度应变分析阐明晶体材料中应力-应变响应的主导因素
- 批准号:
23K03578 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application of Novel X-Ray Diffraction and Scattering Methods for the study of Crystalline, Amorphous, and Nanoscale Materials
用于研究晶体、非晶和纳米材料的新型 X 射线衍射和散射方法的开发和应用
- 批准号:
RGPIN-2017-06453 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
NSERC/PROTO Industrial Research Chair in X-ray diffraction & Crystalline Materials
NSERC/PROTO X 射线衍射工业研究主席
- 批准号:
541939-2018 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Industrial Research Chairs
CAREER: Studies of Chalcogen Bonding-Mediated Assembly towards Porous Crystalline Frameworks, Hierarchical Assemblies, and Multicomponent Materials
职业:硫族键介导的多孔晶体框架组装、分级组装和多组分材料的研究
- 批准号:
2143623 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Probing and Exploiting Short-range Order in Crystalline Materials for Fast Ion Transport
职业:探索和利用晶体材料中的短程有序以实现快速离子传输
- 批准号:
2145832 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant