Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
基本信息
- 批准号:7089794
- 负责人:
- 金额:$ 12.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Primary purpose of this proposal is to provide the applicant with the means and structures for achieving two goals; (1) to develop intelligent computational aids for mining proteomic data accumulating from high throughput techniques like SELDI-TOF mass spectrometry; and (2) the long-term goal is to gain independence as a biomedical informatics researcher by developing methodological expertise in Bayesian methods and proteomic technologies. Applicant will obtain further instruction in probabilistic methods of data analysis; and she will receive education on proteomic technologies that are driving today's proteome research. Training will be provided through formal coursework, directed readings, seminars and conferences in addition to research directed by excellent mentors.
Applicant's research project involves a novel combination of techniques for use in proteomic data analysis. Previous research has included the use of techniques such as genetic algorithms and neural networks for analysis of proteomic data. These techniques were not explicitly designed to take into account background and prior knowledge. Hypothesis of this project is that background knowledge and machine learning techniques can positively influence the selection of appropriate biomarkers from proteomic data, enabling efficient and accurate analysis of massive datasets arising from proteomic profiling studies. Therefore, this project will satisfy four aims: (1) development of a wrapper-based machine learning tool; (2) augment the tool with prior knowledge such as heuristic rules and relationships in the data; (3) use these features along with de-identified patient information as input to classification systems; and (4) evaluate existing techniques for interpreting tandem mass spectrometry (MS-MS or MS/MS) data, and propose, implement and evaluate a Bayesian method for identification of peptides and proteins indicated by the MS-MS spectrum.
描述(由申请人提供):本提案的主要目的是为申请人提供实现两个目标的手段和结构; (1)开发智能计算辅助工具,以从高吞吐量技术等高吞吐量技术积累的采矿蛋白质组学数据; (2)长期目标是通过开发贝叶斯方法和蛋白质组学技术的方法学专业知识来成为一名生物医学信息学研究人员的独立性。申请人将获得有关数据分析概率方法的进一步指导;她将接受有关推动当今蛋白质组研究的蛋白质组学技术的教育。除了由优秀导师指导的研究外,还将通过正式课程,定向阅读,研讨会和会议提供培训。
申请人的研究项目涉及用于蛋白质组学数据分析的技术组合。先前的研究包括使用遗传算法和神经网络等技术来分析蛋白质组学数据。这些技术并未明确设计为考虑背景和先验知识。该项目的假设是背景知识和机器学习技术可以从蛋白质组学数据中积极影响适当的生物标志物的选择,从而对蛋白质组学分析研究产生的大规模数据集进行有效而准确的分析。因此,该项目将满足四个目标:(1)开发基于包装的机器学习工具; (2)用数据中的启发式规则和关系等先验知识增强工具; (3)使用这些功能以及去识别的患者信息作为分类系统的输入; (4)评估现有技术来解释串联质谱法(MS-MS或MS/MS)数据,并提出,实施和评估MS-MS Spectrum指示的肽和蛋白质的贝叶斯方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Vanathi Gopalakri...的其他基金
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
- 批准号:87114978711497
- 财政年份:2012
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Transfer Rule Learning with Functional Mapping for Integrative Modeling of Panomics Data
具有功能映射的转移规则学习用于全景数据的集成建模
- 批准号:92465389246538
- 财政年份:2012
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Transfer Rule Learning with Functional Mapping for Integrative Modeling of Panomics Data
具有功能映射的转移规则学习用于全景数据的集成建模
- 批准号:91114739111473
- 财政年份:2012
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
- 批准号:85498408549840
- 财政年份:2012
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
- 批准号:83730658373065
- 财政年份:2012
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
MARKOVIAN MODELS FOR PROTEIN IDENTIFICATION FROM TANDEM MASS SPECTROMETRY
串联质谱蛋白质鉴定的马尔可夫模型
- 批准号:83643758364375
- 财政年份:2011
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Bayesian Rule Learning Methods for Disease Prediction and Biomarker Discovery
用于疾病预测和生物标志物发现的贝叶斯规则学习方法
- 批准号:83186198318619
- 财政年份:2011
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Bayesian Rule Learning Methods for Disease Prediction and Biomarker Discovery
用于疾病预测和生物标志物发现的贝叶斯规则学习方法
- 批准号:80249418024941
- 财政年份:2011
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
- 批准号:68118466811846
- 财政年份:2004
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
- 批准号:74607157460715
- 财政年份:2004
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
相似国自然基金
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
“微生物-肠-脑轴”调节抑郁症睡眠障碍的机制及其作为rTMS治疗效果预测的生物标志物研究
- 批准号:82371928
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于肝癌多组学数据集成的肝癌生物标志物智能解析与预测方法研究
- 批准号:62333018
- 批准年份:2023
- 资助金额:237 万元
- 项目类别:重点项目
长牡蛎体内砷形态转化的剂量-效应关系、发生机制及生物标志物研究
- 批准号:42306158
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多源异构数据融合与知识补全策略的证候生物标志物知识图谱构建方法研究
- 批准号:82305439
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel circulating biomarker digital scores for assessing treatment response in liver cancer
用于评估肝癌治疗反应的新型循环生物标志物数字评分
- 批准号:1037096610370966
- 财政年份:2022
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Single-molecule protein identification and single-cell proteomics
单分子蛋白质鉴定和单细胞蛋白质组学
- 批准号:1065332910653329
- 财政年份:2022
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Novel circulating biomarker digital scores for assessing treatment response in liver cancer
用于评估肝癌治疗反应的新型循环生物标志物数字评分
- 批准号:1068680310686803
- 财政年份:2022
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
6-thio-2'-deoxyguanosine: A Novel Immunogenic Telomerase-Mediated Therapy in Glioblastoma - A Duke and UTSW Collaboration
6-硫代-2-脱氧鸟苷:一种新型免疫原性端粒酶介导的胶质母细胞瘤疗法 - 杜克大学和 UTSW 合作
- 批准号:1030556510305565
- 财政年份:2021
- 资助金额:$ 12.74万$ 12.74万
- 项目类别:
Administrative Core for the Dietary Biomarkers Development Center at Harvard University
哈佛大学膳食生物标志物开发中心的行政核心
- 批准号:1046113210461132
- 财政年份:2021
- 资助金额:$ 12.74万$ 12.74万
- 项目类别: