A Robust Explainable AI (XAI) Technique for Tumour Classification
用于肿瘤分类的鲁棒可解释人工智能 (XAI) 技术
基本信息
- 批准号:2741280
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent developments in deep learning have sparked an interest in more high-stakes applications such as medical diagnostics. Given a medical scan, a clinician may want to differentiate between healthy and unhealthy tissue, or between pathologies. However, the black-box nature of DL models means their conclusions tend not to be trusted by clinicians who cannot determine how the model came to its decision. Explainable AI (XAI) techniques exist to bridge this gap by intuitively highlighting the most important features of an input. This gives the end-user an idea of how the model came to its conclusion. Knowing that a model's conclusion is correct is essential in medical diagnostics as their outcomes could impact lives.This project is based on expanding my UG4 Dissertation. During that project, I applied 3 XAI techniques to a medical imaging domain, in order to assess their reliability and usability in the diagnostic field, specifically breast tumour classification. I compared explanations generated by the techniques to each other, and to the opinions of 2 radiologists, and discovered that the techniques disagreed both with each other and with the medical truth. The techniques highlighted conflicting regions as most important to the classification decision. They also highlighted fragmented tumour regions, along with many irrelevant regions, and were deemed unhelpful for diagnostics by our clinicians. This work was also published in the 2022 iMIMIC workshop due to its relevance to the active XAI community.During this PhD I plan to further investigate the shortcomings of XAI techniques in the medical field, and generate a more robust piece of work which showcases a larger number of techniques and ML models, with a much more detailed clinician involvement. I then plan to use my findings to create an XAI technique which performs more reliably. Most techniques involve image segmentation - I plan to experiment with finding segmentation techniques that highlight clinical features, rather than just areas of an image with a similar appearance. I also plan to expand this research to other data modalities, for example gene sequences and tabular patient data.The overall goal of this project is to bring to light the problems with these XAI techniques, which are very successful in the computer vision domain but seemingly unreliable for medical diagnostics, and also to overcome these problems by creating a novel technique which takes into account the domain-specific knowledge I will have gathered during my analysis and communication with clinicians.
深度学习的最新发展引发了人们对医疗诊断等更高风险应用的兴趣。通过医学扫描,临床医生可能想要区分健康和不健康的组织,或病理。然而,深度学习模型的黑盒性质意味着它们的结论往往不被临床医生所信任,因为他们无法确定模型是如何做出决定的。可解释的人工智能 (XAI) 技术可以通过直观地突出显示输入的最重要特征来弥补这一差距。这让最终用户了解模型如何得出结论。了解模型的结论是否正确对于医学诊断至关重要,因为其结果可能会影响生活。该项目基于扩展我的 UG4 论文。在该项目期间,我将 3 种 XAI 技术应用于医学成像领域,以评估它们在诊断领域(特别是乳腺肿瘤分类)中的可靠性和可用性。我将这些技术产生的解释相互比较,并与 2 位放射科医生的意见进行比较,发现这些技术彼此不一致,而且与医学事实不一致。这些技术强调冲突区域对于分类决策来说是最重要的。它们还突出显示了碎片化的肿瘤区域以及许多不相关的区域,并且被我们的临床医生认为对诊断没有帮助。由于这项工作与活跃的 XAI 社区相关,因此也发表在 2022 年 iMIMIC 研讨会上。在攻读博士学位期间,我计划进一步研究 XAI 技术在医学领域的缺点,并生成更稳健的工作,展示更大的范围大量技术和机器学习模型,以及更详细的临床医生参与。然后,我计划利用我的发现来创建一种性能更可靠的 XAI 技术。大多数技术都涉及图像分割 - 我计划尝试寻找突出临床特征的分割技术,而不仅仅是具有相似外观的图像区域。我还计划将这项研究扩展到其他数据模式,例如基因序列和表格患者数据。该项目的总体目标是揭示这些 XAI 技术的问题,这些技术在计算机视觉领域非常成功,但看似医疗诊断不可靠,并且还通过创建一种新技术来克服这些问题,该技术考虑了我在分析和与临床医生沟通期间收集的特定领域知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Products Review
- DOI:
10.1177/216507996201000701 - 发表时间:
1962-07 - 期刊:
- 影响因子:2.6
- 作者:
- 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
- DOI:
10.1016/j.techsoc.2023.102253 - 发表时间:
2023-04 - 期刊:
- 影响因子:9.2
- 作者:
- 通讯作者:
Digitization
- DOI:
10.1017/9781316987506.024 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
References
- DOI:
10.1002/9781119681069.refs - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Putrescine Dihydrochloride
- DOI:
10.15227/orgsyn.036.0069 - 发表时间:
1956-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于可解释人工智能的土壤湿度和径流预报研究及旱涝事件的归因分析
- 批准号:42375144
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多时序多模态MR特征和人工智能技术构建骨肉瘤预后的早期预测模型及其生物学可解释性研究
- 批准号:82373108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于偏序理论和可解释人工智能的土地利用变化及其驱动机制研究——以鄂尔多斯为例
- 批准号:42301362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可解释AI框架下知识与数据协同驱动的ICU危重症亚型识别及预后预测方法研究
- 批准号:82372095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于可解释人工智能模型的内镜下结直肠癌浸润深度的研究
- 批准号:82303949
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Explainable AI recommendations for infectious disease management: providing clear, robust, and reliable communication to users
针对传染病管理的可解释人工智能建议:为用户提供清晰、稳健和可靠的沟通
- 批准号:
10073509 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Explainable and Robust AI-powered Intrusion Detection Management
可解释且强大的人工智能驱动的入侵检测管理
- 批准号:
10074348 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CRII: III: Robust and Explainable AI Agents with Common Sense
CRII:III:具有常识的鲁棒且可解释的人工智能代理
- 批准号:
2153546 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Crowdsourcing Labels and Explanations to Build More Robust, Explainable AI/ML Activity Models
众包标签和解释以构建更强大、可解释的 AI/ML 活动模型
- 批准号:
10833847 - 财政年份:2020
- 资助金额:
-- - 项目类别: