A Robust Explainable AI (XAI) Technique for Tumour Classification
用于肿瘤分类的鲁棒可解释人工智能 (XAI) 技术
基本信息
- 批准号:2741280
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent developments in deep learning have sparked an interest in more high-stakes applications such as medical diagnostics. Given a medical scan, a clinician may want to differentiate between healthy and unhealthy tissue, or between pathologies. However, the black-box nature of DL models means their conclusions tend not to be trusted by clinicians who cannot determine how the model came to its decision. Explainable AI (XAI) techniques exist to bridge this gap by intuitively highlighting the most important features of an input. This gives the end-user an idea of how the model came to its conclusion. Knowing that a model's conclusion is correct is essential in medical diagnostics as their outcomes could impact lives.This project is based on expanding my UG4 Dissertation. During that project, I applied 3 XAI techniques to a medical imaging domain, in order to assess their reliability and usability in the diagnostic field, specifically breast tumour classification. I compared explanations generated by the techniques to each other, and to the opinions of 2 radiologists, and discovered that the techniques disagreed both with each other and with the medical truth. The techniques highlighted conflicting regions as most important to the classification decision. They also highlighted fragmented tumour regions, along with many irrelevant regions, and were deemed unhelpful for diagnostics by our clinicians. This work was also published in the 2022 iMIMIC workshop due to its relevance to the active XAI community.During this PhD I plan to further investigate the shortcomings of XAI techniques in the medical field, and generate a more robust piece of work which showcases a larger number of techniques and ML models, with a much more detailed clinician involvement. I then plan to use my findings to create an XAI technique which performs more reliably. Most techniques involve image segmentation - I plan to experiment with finding segmentation techniques that highlight clinical features, rather than just areas of an image with a similar appearance. I also plan to expand this research to other data modalities, for example gene sequences and tabular patient data.The overall goal of this project is to bring to light the problems with these XAI techniques, which are very successful in the computer vision domain but seemingly unreliable for medical diagnostics, and also to overcome these problems by creating a novel technique which takes into account the domain-specific knowledge I will have gathered during my analysis and communication with clinicians.
深度学习的最新发展引发了人们对医学诊断等高风险应用的兴趣。考虑到医疗扫描,临床医生可能希望区分健康和不健康的组织,或者在病理学之间区分。但是,DL模型的黑盒性质意味着他们的结论往往不受临床医生的信任,他们无法确定模型如何做出决定。可以通过直观地强调输入的最重要特征来解释AI(XAI)技术来弥合这一差距。这为最终用户提供了一个关于模型如何得出结论的想法。知道模型的结论在医学诊断中是正确的,因为它们的结果可能会影响生活。该项目基于扩大我的UG4论文。在该项目期间,我将3种XAI技术应用于医学成像域,以评估其在诊断领域的可靠性和可用性,特别是乳腺肿瘤分类。我将这些技术产生的解释与2位放射科医生的观点进行了比较,并发现该技术彼此之间以及医学真相都不同意。这些技术强调了冲突的地区对分类决策最重要。他们还强调了碎片的肿瘤区域以及许多无关的地区,我们的临床医生认为诊断无益。这项工作还在2022年的IMIMIC研讨会上发表,因为它与活跃的XAI社区有关。在此博士学位我计划进一步研究医学领域XAI技术的缺点,并产生了更强大的工作,以展示更多的技术和ML模型,并具有更详细的临床参与。然后,我计划使用我的发现来创建XAI技术,该技术的性能更可靠。大多数技术都涉及图像分割 - 我计划尝试寻找临床特征的分割技术,而不仅仅是具有相似外观的图像的区域。我还计划将这项研究扩展到其他数据模式,例如基因序列和表格患者数据。该项目的总体目标是揭示这些XAI技术的问题,这些技术在计算机视觉领域中非常成功,但对于医疗诊断而言似乎是不可靠的,并且可以通过创建这些新技术来解决这些问题,以解决域名的知识,我将在临床知识中进行访问,我将在我的分析中进行分析和分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Explainable AI recommendations for infectious disease management: providing clear, robust, and reliable communication to users
针对传染病管理的可解释人工智能建议:为用户提供清晰、稳健和可靠的沟通
- 批准号:
10073509 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Explainable and Robust AI-powered Intrusion Detection Management
可解释且强大的人工智能驱动的入侵检测管理
- 批准号:
10074348 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CRII: III: Robust and Explainable AI Agents with Common Sense
CRII:III:具有常识的鲁棒且可解释的人工智能代理
- 批准号:
2153546 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Crowdsourcing Labels and Explanations to Build More Robust, Explainable AI/ML Activity Models
众包标签和解释以构建更强大、可解释的 AI/ML 活动模型
- 批准号:
10833847 - 财政年份:2020
- 资助金额:
-- - 项目类别: