Protecting Against Malicious Use of Image Diffusion Models
防止图像扩散模型的恶意使用
基本信息
- 批准号:2737559
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rapid advancement in the capabilities of generative AI has been accompanied by an increase in scope for their misuse. In particular, text-to-image diffusion models such as DALL-E 2 have reacheda point at which high quality images can be generated with ease by a broad spectrum of users, not all of whom may have good intent. The aim of this PhD project is to investigate how to protect againstmalicious use of this technology. The goal of a text-to-image diffusion model is to generate realistic images based on a text prompt. These models work by using a forward process which sequentially adds noise to an input image and then learns a mapping to reverse this process. Then, starting with noise, we can use the trained model to denoise the image conditioned on the input text and end up with a output image that appears to come from the same distribution as the input images. Instead of retraining or changing how these models work, we can modify parameters in existing models to change their behaviour to be more desirable. One example use case for this methodology is editing implicit biases found in these models. Implicit biases in the training data for text-to-image diffusion models, can lead to perpetuating social and cultural biases when generating images. As an example, asking a diffusion model for an image of a cow will, with high probability, return an image of a cow in a field even although the environment was never specified. Gender biases are also present in these models which is noticeable when generating pictures of people in certain professions. Since retraining the model to avoid these biases is expensive and time consuming, methods such as TIME look to edit the weights of the model after training in order to reduce the likelihood of a chosen bias occurring. There is still a large amount of analysis to be done into the methodology. Some examples include: How is model performance impacted after editing facts? How can we reduce a broader range of biases in one application of the TIME method? Image manipulation using image diffusion models is another emerging issue. The availability and ease at which these tools can be used allow any image to be edited freely, with little in the way of safeguards to prevent malicious intent. In-painting is the process of taking an existing image and using the model to only generate specific areas of the image. One example of how this can be misused is by editing the background of an image of a person to make it appear as if they were somewhere else. Methodology has been proposed to create protections for images against this process, by adding specific perturbations to the image that cause diffusion models to struggle to generate what is prompted. This project would include an analysis into these techniques and other potential prevention strategies.
生成AI能力的快速发展伴随着滥用的范围。特别是,诸如DALL-E 2之类的文本到图像扩散模型已经到达了该点,在该点可以通过广泛的用户轻松地生成高质量的图像,并不是所有的用户都有良好的意图。该博士项目的目的是调查如何防止对该技术的极度使用。文本对图像扩散模型的目标是基于文本提示生成逼真的图像。这些模型通过使用向前过程,该过程顺序将噪声添加到输入图像,然后学习映射以扭转此过程。然后,从噪声开始,我们可以使用训练有素的模型来定义输入文本条件的图像,并最终得到一个似乎来自与输入图像相同的分布的输出图像。我们可以修改现有模型中的参数,以更改其行为以更理想。此方法的一个示例用例是编辑这些模型中发现的隐式偏见。文本到图像扩散模型的培训数据中的隐式偏见,在产生图像时会导致社会和文化偏见的延续。例如,向牛的图像提出扩散模型,即使从未指定环境,也有很高的概率将牛的图像返回田间的图像。这些模型中也存在性别偏见,在某些职业中生成人的图片时,这是显而易见的。由于对模型避免这些偏见的模型是昂贵且耗时的,因此诸如时间之类的方法希望在训练后编辑模型的权重,以减少所选择偏见的可能性。该方法仍然需要进行大量分析。一些示例包括:编辑事实后如何影响模型性能?在时间方法的一种应用中,我们如何减少更广泛的偏见?使用图像扩散模型的图像操纵是另一个新兴问题。可以使用这些工具的可用性和易用性允许自由编辑任何图像,几乎没有保护措施以防止恶意意图。镶嵌是拍摄现有图像并使用模型仅生成图像的特定区域的过程。通过编辑一个人的图像的背景使其看起来好像在其他地方,可以滥用这种情况的一个例子。已经提出了方法,以通过向图像添加特定的扰动来为图像创建保护措施,从而导致扩散模型难以生成所提示的内容。该项目将包括对这些技术和其他潜在预防策略的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
具有数值有效反对数典范除子的射影对数典范对的极大斜率有理连通纤维化的结构及其应用
- 批准号:12301060
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
微谐振腔宇称时间反对称量子调控与高精度微光学陀螺研究
- 批准号:62273314
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
言语中运动感觉双向交互机制在正常与幻听人群中的正反对比研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
微谐振腔宇称时间反对称量子调控与高精度微光学陀螺研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
胃癌铁死亡-免疫协同治疗及其反对比度磁共振成像可视化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
SaTC: CORE: Small: Hardware-assisted Self-repairing in Decentralized Cloud Storage against Malicious Attacks
SaTC:CORE:小型:去中心化云存储中的硬件辅助自我修复抵御恶意攻击
- 批准号:
2225424 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Defense Against Propaganda Strategies by Malicious Cut-out Editing Process
恶意剪裁宣传策略防御研究
- 批准号:
22K19777 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Securing Public Cloud Storage with Protection against Malicious Senders
通过防范恶意发件人来保护公共云存储
- 批准号:
DP200100144 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
EAGER: Enabling Secure Data Recovery for Mobile Devices against Malicious Attacks
EAGER:为移动设备提供安全数据恢复以抵御恶意攻击
- 批准号:
1938130 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
SaTC: STARSS: Small: Domain Informed Techniques for Detecting and Defending Against Malicious Firmware
SaTC:STARSS:小型:用于检测和防御恶意固件的领域知情技术
- 批准号:
1815883 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant