Nanotechnology-based Theranostic Technology for Bone Tissue Engineering

基于纳米技术的骨组织工程治疗诊断技术

基本信息

项目摘要

DESCRIPTION (Provided by the applicant) Abstract: The principal objective of the studies detailed in this application for the NIH Director's New Innovator Award is to engineer the next generation of nanotechnology-based theranostic (diagnostic + therapeutic) technology that will facilitate non-invasive imaging, and at the same time enable targeted activation of the healing process at sites of hampered musculoskeletal repair. Bone loss, due to trauma, disease, aging, or menopause is an increasingly serious health problem, and the emerging field of bone tissue engineering seeks to develop strategies to ameliorate focal bone loss. The proposed theranostic technology harnesses the physical properties of innovative multifunctional nanomaterials (single-walled carbon nanotubes and gold nanoparticles), and an acoustic wave phenomenon induced by nanosecond electromagnetic pulses known as the photoacoustic (PA) effect. The PA-based imaging approach exploits the combined intrinsic and extrinsic photoacoustic contrast between regenerating tissues and scaffolds or transplanted cells containing nanoparticles to non-invasively image (spatially and temporally) de novo bone formation and neo- vascularization. The unique and innovative approach for photoacoustic treatment involves a biophysical stimulus to bias the differentiation of progenitor cells towards controlled osteoblastogenesis thereby enhancing the quality and quantity of bone formation in the exposed region. The investigations will provide new insights, and lay the scientific foundation for future development of an integrated imaging and therapeutic technology to monitor and treat specific skeletal pathologies. Upon complete development, this technology could be made widely available to the general public, including medically under-served populations since, as an imaging modality, it will be non-ionizing, user-friendly and cost less than other 3D imaging modalities used to monitor bone regeneration; as a therapeutic modality, it would be suitable for subjects able or unable to stand (e.g., frail elderly, spinal cord injury, confined to wheelchairs or bed-rest, experience space travel) during treatment. Public Health Relevance: Bone loss, due to trauma, disease, aging, or menopause is an increasingly serious health problem. This proposal will provide new insights, and lays the scientific foundation for future development of a theranostic (integrated therapeutic and diagnostic) technology for combined non-invasive imaging and treatment in a single setting of specific skeletal pathologies; ultimately, with this proof of principal defined, there is the possibility of development for a wider range of injuries or diseases which require targeted detection, and treatment. Upon complete development, this technology could be made widely available to the general public, including medically under-served populations since, as an imaging modality, it will be non-ionizing, userfriendly and costs less than other 3D imaging modalities used to monitor bone regeneration; as a therapeutic modality, it would be suitable for subjects able or unable to stand (e.g., frail elderly, spinal cord injury, confined to wheelchairs or bed-rest, experience space travel) during treatment for osteo-integration, fracture healing, osteoporosis and similar diseases.
描述(由申请人提供) 摘要:本次 NIH 院长新创新者奖申请中详述的研究的主要目标是设计下一代基于纳米技术的治疗诊断(诊断 + 治疗)技术,该技术将促进非侵入性成像,同时使有针对性地激活肌肉骨骼修复受阻部位的愈合过程。由于创伤、疾病、衰老或更年期而导致的骨质流失是一个日益严重的健康问题,骨组织工程的新兴领域寻求开发改善局灶性骨质流失的策略。所提出的治疗诊断技术利用了创新多功能纳米材料(单壁碳纳米管和金纳米颗粒)的物理特性,以及纳秒电磁脉冲引起的声波现象,即光声(PA)效应。基于 PA 的成像方法利用再生组织和支架或含有纳米粒子的移植细胞之间的组合内在和外在光声对比度来非侵入性地成像(空间和时间)从头骨形成和新血管形成。光声治疗的独特创新方法涉及生物物理刺激,使祖细胞的分化偏向受控的成骨细胞生成,从而提高暴露区域骨形成的质量和数量。这些研究将提供新的见解,并为未来开发监测和治疗特定骨骼病理的综合成像和治疗技术奠定科学基础。开发完成后,这项技术可以广泛向公众提供,包括医疗服务不足的人群,因为作为一种成像方式,它将是非电离的、用户友好的,并且成本低于用于监测的其他 3D 成像方式骨再生;作为一种治疗方式,它适用于治疗期间能够或无法站立的受试者(例如体弱的老年人、脊髓损伤、只能坐在轮椅上或卧床休息、经历过太空旅行)。 公共健康相关性:由于创伤、疾病、衰老或更年期而导致的骨质流失是一个日益严重的健康问题。该提案将提供新的见解,并为未来开发治疗诊断(综合治疗和诊断)技术奠定科学基础,该技术可在特定骨骼病理学的单一环境中结合非侵入性成像和治疗;最终,随着本金证明的定义,有可能出现更广泛的伤害或疾病,需要有针对性的检测和治疗。开发完成后,这项技术可以广泛向公众提供,包括医疗服务不足的人群,因为作为一种成像方式,它将是非电离的、用户友好的,并且成本低于用于监测骨再生的其他 3D 成像方式;作为一种治疗方式,它适用于能够或不能站立的受试者(例如,体弱的老年人、脊髓损伤、只能坐在轮椅上或卧床休息、经历太空旅行)在骨整合、骨折愈合、骨质疏松症和骨质疏松症治疗期间。类似的疾病。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.
  • DOI:
    10.1371/journal.pone.0038185
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Paratala BS;Jacobson BD;Kanakia S;Francis LD;Sitharaman B
  • 通讯作者:
    Sitharaman B
In Vitro Bioactivity of One- and Two-Dimensional Nanoparticle-Incorporated Bone Tissue Engineering Scaffolds.
  • DOI:
    10.1089/ten.tea.2017.0117
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason T Rashkow;G. Lalwani;B. Sitharaman
  • 通讯作者:
    Jason T Rashkow;G. Lalwani;B. Sitharaman
Quantification of single-cell nanoparticle concentrations and the distribution of these concentrations in cell population.
单细胞纳米颗粒浓度的定量以及这些浓度在细胞群中的分布。
  • DOI:
    10.1098/rsif.2013.1152
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rashkow,JasonT;Patel,SunnyC;Tappero,Ryan;Sitharaman,Balaji
  • 通讯作者:
    Sitharaman,Balaji
Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells.
  • DOI:
    10.2217/nnm.15.35
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rashkow JT;Talukdar Y;Lalwani G;Sitharaman B
  • 通讯作者:
    Sitharaman B
Toxicology of graphene-based nanomaterials.
  • DOI:
    10.1016/j.addr.2016.04.028
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    16.1
  • 作者:
    Lalwani G;D'Agati M;Khan AM;Sitharaman B
  • 通讯作者:
    Sitharaman B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Balaji Sitharaman其他文献

Balaji Sitharaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Balaji Sitharaman', 18)}}的其他基金

Electrochemically-Controlled Rapid Chromatographic Separation of Nuisance Compounds from Natural Product Extracts
电化学控制快速色谱分离天然产物提取物中的有害化合物
  • 批准号:
    10706533
  • 财政年份:
    2022
  • 资助金额:
    $ 235.5万
  • 项目类别:
Electrochemically-Controlled Rapid Chromatographic Separation of Nuisance Compounds from Natural Product Extracts
电化学控制快速色谱分离天然产物提取物中的有害化合物
  • 批准号:
    10483473
  • 财政年份:
    2022
  • 资助金额:
    $ 235.5万
  • 项目类别:
Preclinical Efficacy And Safety Evaluation Of Graphene Nanoparticle-based Magneti
石墨烯纳米粒子基磁性材料的临床前疗效和安全性评价
  • 批准号:
    8646659
  • 财政年份:
    2013
  • 资助金额:
    $ 235.5万
  • 项目类别:

相似国自然基金

ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
  • 批准号:
    82303993
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
  • 批准号:
    82371567
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
  • 批准号:
    82302868
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
  • 批准号:
    82302829
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the effects of listening effort on sentence processing and memory in sensorineural hearing loss: Evidence from simultaneous electrophysiology and pupillometry
了解听力努力对感音神经性听力损失的句子处理和记忆的影响:来自同步电生理学和瞳孔测量的证据
  • 批准号:
    10523120
  • 财政年份:
    2021
  • 资助金额:
    $ 235.5万
  • 项目类别:
Early Biomarkers of Alzheimer's Disease: Using Speech Markers to Detect Mild Cognitive Impairment
阿尔茨海默病的早期生物标志物:使用语音标志物检测轻度认知障碍
  • 批准号:
    10862942
  • 财政年份:
    2021
  • 资助金额:
    $ 235.5万
  • 项目类别:
Biomechanical mapping of the optic nerve head and peripapillary sclera using high frequency ultrasonic elastography
使用高频超声弹性成像对视神经乳头和视乳头周围巩膜进行生物力学测绘
  • 批准号:
    10712180
  • 财政年份:
    2021
  • 资助金额:
    $ 235.5万
  • 项目类别:
Understanding the effects of listening effort on sentence processing and memory in sensorineural hearing loss: Evidence from simultaneous electrophysiology and pupillometry
了解听力努力对感音神经性听力损失的句子处理和记忆的影响:来自同步电生理学和瞳孔测量的证据
  • 批准号:
    10914386
  • 财政年份:
    2021
  • 资助金额:
    $ 235.5万
  • 项目类别:
Early Biomarkers of Alzheimer's Disease: Using Speech Markers to Detect Mild Cognitive Impairment
阿尔茨海默病的早期生物标志物:使用语音标志物检测轻度认知障碍
  • 批准号:
    10457426
  • 财政年份:
    2021
  • 资助金额:
    $ 235.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了