N-point motions in Random Dynamical Systems

随机动力系统中的 N 点运动

基本信息

  • 批准号:
    2602126
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Random dynamical systems combine classical, deterministic, mathematical models designed to capture the governing essence of a system, i.e. its main driving forces, together with external stochastic fluctuations known as noise, providing us with a significantly more realistic framework to describe a wide range of processes [1]. In order to study these systems, robust analytical tools have been developed from stochastic analysis, ergodic theory and more recently bifurcation theory, allowing not only for a statistical explanation of the model but also for a dynamical path-wise interpretation of its behavior.In this setting, we focus on the study of several (n) particles within a random dynamical system, which we refer to as the n-point motion, to go beyond the usual single-point, statistical, and probabilistic description of a model. Starting with the two-point motion, in the case of stochastic differential equations and particularly for stochastic flows of diffeomorphisms, it was shown by H. Kunita in 1990 [2] that the law of the process is fully characterized by the two-point motion, or in other words that knowledge of the dynamics of any two particles evolving within the system yields a full description of the flow. Indeed, the study of the two-point motion in random dynamical systems is also crucial for the description of synchronization and closely relates to fundamental notions in the field such as Lyapunov exponents or the system's entropy amongst others.More recently, Homburg et al. have observed a close link between the bifurcations on the invariant measure of the two-point motion and phase transitions that provide a much richer understanding of the underlying system and its dynamics. However, a complete theory able to describe this topic is yet to be developed.The aim of this project is to identify and analyze such novel mechanisms, as we access the hidden information behind the two-point motion's dynamics, and continue by building towards a full description of the system's n-point motion, uncovering the properties of such complex models.This project falls within the EPSRC statistics and applied probability, and non-linear systems research areas.
随机动力系统结合了经典的确定性数学模型,旨在捕获系统的控制本质(即其主要驱动力)以及称为噪声的外部随机波动,为我们提供了一个更加现实的框架来描述各种过程[1]。为了研究这些系统,从随机分析、遍历理论和最近的分岔理论中开发出了强大的分析工具,不仅可以对模型进行统计解释,还可以对其行为进行动态路径解释。在这种背景下,我们专注于研究随机动力系统中的几个 (n) 粒子(我们将其称为 n 点运动),以超越模型的通常单点、统计和概率描述。从两点运动开始,在随机微分方程的情况下,特别是对于微分同胚的随机流,H. Kunita 在 1990 年 [2] 表明,过程规律完全由两点运动来表征,或者换句话说,对系统内演化的任意两个粒子的动力学的了解可以产生对流动的完整描述。事实上,随机动力系统中两点运动的研究对于同步的描述也至关重要,并且与该领域的基本概念密切相关,例如李雅普诺夫指数或系统熵等。观察到两点运动不变测度的分岔与相变之间存在密切联系,这为底层系统及其动力学提供了更丰富的理解。然而,尚未开发出能够描述该主题的完整理论。该项目的目的是识别和分析此类新颖的机制,因为我们访问两点运动动力学背后的隐藏信息,并继续构建系统的 n 点运动的完整描述,揭示了此类复杂模型的属性。该项目属于 EPSRC 统计和应用概率以及非线性系统研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

群体感应效应对生物强化处理系统中微生物群落构建的驱动作用研究
  • 批准号:
    52300073
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
多重故障和源网荷储互动作用下新型电力系统电压稳定机理与方法
  • 批准号:
    52377109
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
超导限流器接入电网暂态特性分析及其与继电保护动作的适配性研究
  • 批准号:
    52307023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多通道感知整合的内隐动作学习的行为学及计算模型研究
  • 批准号:
    32300868
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
列车动荷载扰动作用下饱和软黄土地铁隧道衬砌破坏机理研究
  • 批准号:
    52308374
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Large deviation analysis of interacting systems of Brownian motions and random interlacements at positive temperature
正温度下布朗运动和随机交错相互作用系统的大偏差分析
  • 批准号:
    2273598
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Design and Experimental Validation of an Articulated Robot Capable of Self-Righting Motions from a Random Initial Orientation during Free Fall
能够在自由落体过程中从随机初始方向进行自恢复运动的铰接式机器人的设计和实验验证
  • 批准号:
    544808-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
A study on the ultimate performance of steel high-rise buildings subjected to long period seismic ground motions which are estimated during severe earthquakes
强震期间长周期地震动作用下钢结构高层建筑的极限性能研究
  • 批准号:
    18560557
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Earthquake dameage prediction of wooden houses in Oska basin subjected to strong ground motions obtained with the consideration of the source characteristics
考虑震源特性的奥斯卡盆地木屋强地震动震害预测
  • 批准号:
    11650601
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface Motions in Random Media
随机介质中的表面运动
  • 批准号:
    9870217
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了