N-point motions in Random Dynamical Systems
随机动力系统中的 N 点运动
基本信息
- 批准号:2602126
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Random dynamical systems combine classical, deterministic, mathematical models designed to capture the governing essence of a system, i.e. its main driving forces, together with external stochastic fluctuations known as noise, providing us with a significantly more realistic framework to describe a wide range of processes [1]. In order to study these systems, robust analytical tools have been developed from stochastic analysis, ergodic theory and more recently bifurcation theory, allowing not only for a statistical explanation of the model but also for a dynamical path-wise interpretation of its behavior.In this setting, we focus on the study of several (n) particles within a random dynamical system, which we refer to as the n-point motion, to go beyond the usual single-point, statistical, and probabilistic description of a model. Starting with the two-point motion, in the case of stochastic differential equations and particularly for stochastic flows of diffeomorphisms, it was shown by H. Kunita in 1990 [2] that the law of the process is fully characterized by the two-point motion, or in other words that knowledge of the dynamics of any two particles evolving within the system yields a full description of the flow. Indeed, the study of the two-point motion in random dynamical systems is also crucial for the description of synchronization and closely relates to fundamental notions in the field such as Lyapunov exponents or the system's entropy amongst others.More recently, Homburg et al. have observed a close link between the bifurcations on the invariant measure of the two-point motion and phase transitions that provide a much richer understanding of the underlying system and its dynamics. However, a complete theory able to describe this topic is yet to be developed.The aim of this project is to identify and analyze such novel mechanisms, as we access the hidden information behind the two-point motion's dynamics, and continue by building towards a full description of the system's n-point motion, uncovering the properties of such complex models.This project falls within the EPSRC statistics and applied probability, and non-linear systems research areas.
随机动态系统结合了旨在捕获系统的管理本质的经典,确定性的数学模型,即其主要驱动力,以及外部随机波动,称为噪声,为我们提供了一个更现实的框架,以描述广泛的过程[1]。 In order to study these systems, robust analytical tools have been developed from stochastic analysis, ergodic theory and more recently bifurcation theory, allowing not only for a statistical explanation of the model but also for a dynamical path-wise interpretation of its behavior.In this setting, we focus on the study of several (n) particles within a random dynamical system, which we refer to as the n-point motion, to go beyond the usual single-point, statistical, and probabilistic description模型。从两点运动开始,在随机微分方程的情况下,尤其是对于差异性的随机流,H。Kunita在1990年[2]表明,该过程的法律已完全表征了两点运动,或者以两种粒子在系统中的动力学知识在系统中进化的知识产生了整体描述。实际上,对随机动力学系统中两点运动的研究对于描述同步也至关重要,并且与诸如Lyapunov指数或系统熵等领域的基本概念紧密相关。最近,Homburg等人。已经观察到分叉之间在两点运动的不变度度量和相变的不变度之间的紧密联系,这些度量为基础系统及其动力学提供了更丰富的理解。但是,一个能够描述该主题的完整理论尚未开发出来。该项目的目的是识别和分析此类新型机制,因为我们访问了两点运动动态背后的隐藏信息,并继续朝着对系统的N点运动进行完整描述,揭示了此类复杂模型的属性。这些项目属于EPSRC Statistic statistical intercrc statistical interiasisation conteriations in epsrc statistical copied Probiencity&Applied Propied and Nons and and and and and and and and and and and and and and liNlinear and linnlinear。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于动作表示与生成模型及人类反馈强化学习的智能运动教练研究
- 批准号:62373183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
列车动荷载扰动作用下饱和软黄土地铁隧道衬砌破坏机理研究
- 批准号:52308374
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结构化文本引导的三维人体动作生成方法研究
- 批准号:62306031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钻柱纵向振动作用下铝合金钻杆杆体螺纹高温疲劳失效机理与寿命预测
- 批准号:42302349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于层级约束解析动力学建模的多移动作业机器人避碰协同控制
- 批准号:52305084
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Large deviation analysis of interacting systems of Brownian motions and random interlacements at positive temperature
正温度下布朗运动和随机交错相互作用系统的大偏差分析
- 批准号:
2273598 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Design and Experimental Validation of an Articulated Robot Capable of Self-Righting Motions from a Random Initial Orientation during Free Fall
能够在自由落体过程中从随机初始方向进行自恢复运动的铰接式机器人的设计和实验验证
- 批准号:
544808-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A study on the ultimate performance of steel high-rise buildings subjected to long period seismic ground motions which are estimated during severe earthquakes
强震期间长周期地震动作用下钢结构高层建筑的极限性能研究
- 批准号:
18560557 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Earthquake dameage prediction of wooden houses in Oska basin subjected to strong ground motions obtained with the consideration of the source characteristics
考虑震源特性的奥斯卡盆地木屋强地震动震害预测
- 批准号:
11650601 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)