IMT Physics-based and Data-driven Modelling of pollutant Emissions from Engines

IMT 基于物理和数据驱动的发动机污染物排放建模

基本信息

  • 批准号:
    2586071
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The project that I'm interested is advertised and its titled "Physics-based and Data-driven Modelling of pollutant Emissions from Engines ". The project involves in modeling soot particle emissions from gas turbine engines. Soot is a major pollutant produced by gas turbine engines therefore the ability to model and predict soot is crucial to the development of next generation low emission gas turbine and internal combustion (IC) engines.Modeling soot emissions a particularly challenging problem due to its small scale interactions between turbulence, particle dynamics and chemistry. To study soot particle evolution in gas turbine engines, it requires four different components: model for background turbulent flow, model for gas phase combustion, model for physico-chemical mechanisms that effects the soot particles by various micro-process like inception, growth and oxidation and model for particle evolution dynamics.The most accurate way to simulate soot emissions is through direct numerical simulations (DNS) which directly solves the unsteady Navier-Stokes equations and is capable of resolving small scale interactions of soot particles in turbulent flows but these solutions come with a great deal of computational expense. Due to this reason other relatively less computationally expensive models have been extensively used, such as the large eddy simulations (LES). Even though LES is widely employed to model turbulent reacting flows, it still remains a formidable challenge to achieve accurate modeling of small scale interactions between soot particles, chemistry and turbulence. Therefore this PhD project aims to address three issues encountered in LES when modeling soot formation and evolution in order to develop an enhanced LES model to accurately predict soot emissions in a model gas turbine combustor. The three main issues addressed are listed below.1.Develop a consistent LES/probability density function (PDF) approach on unstructured meshes to accurately characterize small scale interactions between turbulence, soot and chemistry in a gas turbine model combustor by solving the joint sub-filter PDF equation of the scalars used to describe the flame structure and gas-phase precursor evolution as well as the moments of number density function (NDF) of soot particles2.Incorporate molecular diffusivities of individual species into the PDF solver to study the effects of resolved differential diffusion on nucleation, growth and oxidation of soot particles.3.Assessing the sensitivity of soot characteristics to soot-precursor chemistry and to the choice of method of moments (MOM) that is used to reconstruct the NDF of soot particles.The new enhanced LES/PDF-MOM model will be used to simulate a model gas turbine combustor developed by DLR Germany. The results will be validated using a dataset provided by DLR, which was experimentally produced using high speed laser diagnostics in a high pressure gas turbine combustor.A DNSs will be run on turbulent wall jet-diffusion flame and the valuable dataset obtained will be used to train a convolutional neural network (CNN) based reduced order model for predict soot emissions from gas turbine engines. The aim is to combine the physics-based model (obtained from achieving the previous objective) and the CNN model to develop a CNN assisted hybrid physics-based model that is capable of accurately predicting soot emission at a reduced computational cost.
我感兴趣的项目被广告,其标题为“基于物理和数据驱动的引擎排放剂的建模”。该项目涉及对燃气轮机发动机的烟灰颗粒排放进行建模。烟灰是由燃气轮机发动机产生的主要污染物,因此对烟灰进行建模和预测的能力对于下一代低排放燃气轮机和内部燃烧(IC)发动机的发展至关重要。修改烟灰烟灰排放一个特别具有挑战性的问题,由于其小规模相互作用之间的小规模相互作用,粒子动力学和化学性质。要研究燃气轮机发动机中的烟灰颗粒进化,它需要四个不同的组成部分:背景湍流模型,气相燃烧模型,用于影响各种微型过程的物理化学机制的模型,例如,粒子进化动力学的最准确的方式(直接启用了(通过)数字(直接)(直接启用)(direction simienty simienty n dimection simient simient simienty simienty n dimection n dimection) Navier-Stokes方程,能够解决湍流中烟灰颗粒的小规模相互作用,但这些解决方案具有大量的计算费用。由于这个原因,其他相对较少的计算昂贵模型已被广泛使用,例如大型涡流模拟(LES)。即使LE被广泛用于建模湍流反应流,但要实现烟灰颗粒,化学和湍流之间的小规模相互作用的准确建模仍然是一个巨大的挑战。因此,该博士学位项目旨在解决LES在建模烟灰组成和演化时遇到的三个问题,以开发增强的LES模型,以准确预测模型燃气涡轮机燃烧器中的烟灰发射。 The three main issues addressed are listed below.1.Develop a consistent LES/probability density function (PDF) approach on unstructured meshes to accurately characterize small scale interactions between turbulence, soot and chemistry in a gas turbine model combustor by solving the joint sub-filter PDF equation of the scalars used to describe the flame structure and gas-phase precursor evolution as well as the moments of number density function烟灰颗粒的(NDF)2。在PDF求解器中纳入分子分子扩散,以研究解决方案的差异扩散对烟灰颗粒成核,生长和氧化的影响。3。遵守烟灰特征对烟灰化学的敏感性,以使烟灰化学的敏感性以及对烟灰化的选择(启用)新的方法(MOM)。 LES/PDF-MOM模型将用于模拟DLR德国开发的模型燃气轮机燃烧器。 The results will be validated using a dataset provided by DLR, which was experimentally produced using high speed laser diagnostics in a high pressure gas turbine combustor.A DNSs will be run on turbulent wall jet-diffusion flame and the valuable dataset obtained will be used to train a convolutional neural network (CNN) based reduced order model for predict soot emissions from gas turbine engines.目的是结合基于物理的模型(从实现先前的目标获得)和CNN模型,以开发CNN辅助混合物理学模型,该模型能够以降低的计算成本准确预测烟灰发射。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
  • 批准号:
    52306105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
  • 批准号:
    12375219
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于数据-机理协同驱动降阶模型的质子交换膜燃料电池多物理场孪生
  • 批准号:
    52306112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于观测和CMIP6/LUMIP试验的毁林/造林生物物理效应模拟评估和约束研究
  • 批准号:
    42375115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

The chemistry and device physics of organic solar cells based on non-fullerene acceptors
基于非富勒烯受体的有机太阳能电池的化学和器件物理
  • 批准号:
    2910282
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Framework construction and engineering development of polarimetric-interferometric synthetic aperture radar based on phasor-quaternion neural networks
基于相量四元数神经网络的偏振干涉合成孔径雷达框架构建及工程开发
  • 批准号:
    23H00487
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Improving Typhoon Track Forecasts through Physics-Based Bias Correction
通过基于物理的偏差校正改进台风路径预报
  • 批准号:
    23H01665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of plastic functionality electronic devices based on elementary processes of point defects fluid and condensation
基于点缺陷流体和冷凝基本过程的塑料功能电子器件的开发
  • 批准号:
    23H01687
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了