Low latency abstractions for extreme scale simulation.

用于极端规模模拟的低延迟抽象。

基本信息

  • 批准号:
    2478907
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

High-fidelity numerical simulations bridge the gap between theory and experiment and are essential in many areas of science. This is particularly the case when studying complex systems such as the ocean or atmosphere where the theory cannot be solved exactly and experiments are hard, or even impossible, to perform. Historically, high-performance numerical codes have been written exclusively in low-level, compiled languages such as C and Fortran. While such codes can be highly efficient and performant, they are difficult to write and maintain as the coder is required to understand all aspects of the problem from the abstract mathematical description to the specific parallel implementation. Any changes to the mathematics and/or platform are also likely to require significant amount of re-coding. Runtime code generation (RTCG) is a solution to these problems. Rather than starting with the low-level code, the performance critical sections are generated during the program runtime and then compiled with a just-in-time (JIT) compiler before they are used. This approach permits abstractions to be introduced between the mathematics and computer science, allowing specialists from either domain, but not necessarily both, to contribute to the code. The code can also be much more flexible regarding both the mathematical constructs allowed and the platforms that it can run on. Strong scaling In the current computing landscape, by far the easiest way to make your code run faster is to run it on a more powerful computer. It is therefore essential that the problem can be broken apart and distributed across the machine for solving in parallel. One would naively assume that running your problem on a machine with twice the computing power would lead to a halving of the time-to-solution but unfortunately this is rarely the case. In all pieces of software there are elements of the program that cannot be run in parallel. As the number of processors increases, this serial overhead ends up taking up an increasingly large fraction of the total runtime until no more speedup is possible. This effect is known as strong-scaling and is formalised in Amdahl's Law. Firedrake This thesis focuses on the Firedrake project, a library for numerically solving PDEs using the finite-element method (FEM). Firedrake uses RTCG to create a high-performance kernel that is used to assemble matrices. Unfortunately, compared with other FEM packages, Firedrake scales poorly in the small-problem limit (analogous to the strong-scaling limit for a fixed number of processors) during both matrix assembly and when solving the linear system. As the problem size decreases, the time-to-solution plateaus at a much greater value than is desirable. Aims and objectives Aims Improve the scaling behaviour of Firedrake in the small problem limit Objectives Profile Firedrake to identify performance bottlenecks Possibly rewrite the parallel scheduling layer of Firedrake (PyOP2) to expand the JIT-compiled kernel and reduce the time spent executing Python Novelty of the research methodology Code generation is an emerging technique in simulation science. By enabling the composition of sophisticated numerics and advanced parallel implementation for any differential equation the scientist can imagine, this technology combines productivity and performance in a combination which enables more scientists to conduct more sophisticated simulation science than ever before. Alignment to EPSRC's strategic theme and research area. This project spans the Engineering, ICT, LWEC, Manufacturing the Future, Mathematical Sciences, and Physical sciences themes. It sits in the Continuum Mechanics Research area. Collaborators: Dr Lawrence Mitchell, Durham University
高保真数值模拟弥合了理论与实验之间的差距,在许多科学领域至关重要。在研究海洋或大气等复杂系统时尤其如此,因为理论无法精确求解,实验也很难甚至不可能进行。从历史上看,高性能数字代码都是用低级编译语言(例如 C 和 Fortran)编写的。虽然此类代码非常高效且高性能,但它们难以编写和维护,因为编码人员需要理解问题的所有方面,从抽象数学描述到具体并行实现。对数学和/或平台的任何更改也可能需要大量的重新编码。运行时代码生成(RTCG)是这些问题的解决方案。性能关键部分不是从低级代码开始,而是在程序运行时生成,然后在使用之前使用即时 (JIT) 编译器进行编译。这种方法允许在数学和计算机科学之间引入抽象,允许来自任一领域(但不一定是两个领域)的专家为代码做出贡献。就允许的数学结构和可以运行的平台而言,代码也可以更加灵活。强大的扩展能力 在当前的计算环境中,迄今为止,让代码运行得更快的最简单方法就是在更强大的计算机上运行它。因此,必须将问题分解并分布到机器上以并行解决。人们会天真地认为,在具有两倍计算能力的机器上运行问题会导致解决时间减半,但不幸的是,这种情况很少发生。在所有软件中,都有一些程序元素无法并行运行。随着处理器数量的增加,这种串行开销最终会占据总运行时间的越来越大的一部分,直到无法再进行加速。这种效应被称为强缩放效应,并在阿姆达尔定律中得到了形式化。 Firedrake 本论文重点介绍 Firedrake 项目,这是一个使用有限元方法 (FEM) 数值求解偏微分方程的库。 Firedrake 使用 RTCG 创建一个用于组装矩阵的高性能内核。不幸的是,与其他 FEM 包相比,Firedrake 在矩阵组装和求解线性系统期间在小问题限制(类似于固定数量处理器的强扩展限制)方面的扩展性很差。随着问题规模的减小,解决问题的时间稳定在比期望值大得多的值上。目的和目标 目的 改善 Firedrake 在小问题限制下的扩展行为 目标 分析 Firedrake 以识别性能瓶颈 可能重写 Firedrake 的并行调度层 (PyOP2) 以扩展 JIT 编译的内核并减少执行 Python 所花费的时间研究方法 代码生成是模拟科学中的一项新兴技术。通过对科学家可以想象的任何微分方程进行复杂的数字组合和高级并行实现,该技术将生产力和性能结合在一起,使更多的科学家能够进行比以往更复杂的模拟科学。与 EPSRC 的战略主题和研究领域保持一致。该项目涵盖工程、ICT、LWEC、未来制造、数学科学和物理科学主题。它位于连续体力学研究区。合作者:杜伦大学劳伦斯·米切尔博士

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于“三明治”构型的延迟荧光材料的设计、合成及其应用研究
  • 批准号:
    52303244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抑制RUVBL1/2复合体逆转HnRNPA2B1-SG水凝胶相变阻断老年MCI大鼠术后神经认知恢复延迟动力学机制研究
  • 批准号:
    82371205
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
硫杂环稠环修饰的窄谱带热活化延迟荧光材料的激发态调控与聚集态研究
  • 批准号:
    52303228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PD-L1延迟中性粒细胞凋亡促进活动性结核肺损伤的机制研究
  • 批准号:
    82302533
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磷脂酰乙醇胺代谢紊乱介导自噬相关磷酸化α-syn清除异常在术后认知恢复延迟中作用及机制
  • 批准号:
    82301359
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
  • 批准号:
    10114427
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Extending the Teach of Gravitational-Wave Detectors through Low Latency Data Products, Unmodeled Searches, and Detector Characterization
通过低延迟数据产品、未建模搜索和探测器表征扩展引力波探测器的教学
  • 批准号:
    2308862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Speech to Instant Gesture: Low-Latency, Real-Time Co-Speech Gesture Generation
语音到即时手势:低延迟、实时协同语音手势生成
  • 批准号:
    23K16929
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The relationship between wakefulness after sleep onset latency (WASF) and cognitive function among older Japanese people: an examination by MCI subtype.
日本老年人入睡潜伏期后的觉醒 (WASF) 与认知功能之间的关系:按 MCI 亚型进行的检查。
  • 批准号:
    23K19791
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了