ASSESSING THE PERFORMANCE OF AN INTER-MARKET TRADING STRATEGY IN THE LOW AND HIGH FREQUENCY DOMAIN BASED ON HISTORIC DATA USING MACHINE LEARNING

使用机器学习根据历史数据评估低频和高频领域间市场交易策略的表现

基本信息

  • 批准号:
    2118751
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

An interesting application and expansion of the deep learning concepts should be pioneered in PhD research by applying them to high frequency order book data, namely to use machine learning tools to derive a high frequency trading mechanism. As researched in coursework during my MSc in Algorithmic Trading, I evaluated that NVWAP (Notional Volume Weighted Average Price) curves are governed by four statistics, namely steepening/flattening and contraction/expansion. Contraction/expansion of NVWAP curves is quantified by computing the change in total volume on both, the bid and ask-side of the limit order book. This concept should be taken as input and further developed by machine learning tools to derive whether an automated trading system could operate profitably in practice. To do this, the data is supposed to be separated in various chunks serving as input for the deep neural net. Its findings should then be applied on trading real time markets and evaluated whether a profitable operation is achievable. To appreciate inter-market relations, two or more correlated assets can be investigated simultaneously to derive trading decisions. The science of machine learning is quite new compared to the concepts of finance and investments. Given recent developments in terms of the amount of data recorded and being accessible, and modern computing technology, it is worthwhile to search for synergy between the two subjects and scan the data for patterns that have not been obvious for market participants before. Clearly, this is a challenging task since powerful players such as large investment banks, but also institutional and professional investors aim at doing the same. Recent and major advances in combining advanced computational tools and finance further motivate to do so. There is no magic in machine learning technique; however, it is capable of learning patterns of data from the past to apply its findings in future. Grounded on the general definition of machine learning to be a computer program learning from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E, the task will be investigated. One of the most recent tools in machine learning are deep neural nets (DNN). A deep neural network (DNN) is an artificial neural network with multiple hidden layers of units between the input and output layers. For example, one can built deep neural networks for modeling mortgage delinquency and prepayment risk using a dataset of over 120 million prime and subprime mortgages and simulate mortgage 17 portfolios for risk analysis purposes. It was even found that some of the classical theory in finance such as the efficient market hypothesis might be challenged by deep learning. Yet another motivation is to apply deep learning to discover trading strategies not yet executed in the markets. To do so, the historic data was split up into two constituent parts. Firstly, 80% of the historic data were defined to be test data, i.e. data on which the market structure was investigated. The remaining 20% were training data, i.e. data the neural net has not seen before. In other words, the learning outcomes of 80% of the data were now applied to the remaining 20% of the data with the result that several financial instruments could indeed be profitably traded.
深度学习概念的有趣应用和扩展应该在博士研究中开创,将其应用于高频订单簿数据,即使用机器学习工具推导高频交易机制。正如我在算法交易硕士期间的课程研究中所研究的那样,我评估了 NVWAP(名义交易量加权平均价格)曲线由四种统计数据控制,即陡峭/平坦和收缩/扩张。 NVWAP 曲线的收缩/扩张是通过计算限价订单簿的买盘和卖盘总量的变化来量化的。这个概念应该被机器学习工具作为输入并进一步开发,以得出自动交易系统在实践中是否可以盈利。为此,数据应该被分成不同的块,作为深度神经网络的输入。然后,其研究结果应应用于实时市场交易,并评估是否可以实现盈利。为了了解市场间关系,可以同时研究两个或多个相关资产以得出交易决策。与金融和投资的概念相比,机器学习科学是相当新的。考虑到最近在记录的数据量和可访问性以及现代计算技术方面的发展,寻找两个主题之间的协同作用并扫描数据以寻找市场参与者以前不明显的模式是值得的。显然,这是一项具有挑战性的任务,因为大型投资银行等强大参与者以及机构和专业投资者也致力于这样做。先进计算工具和金融相结合的最新重大进展进一步推动了这一点。机器学习技术并没有什么神奇之处;然而,它能够学习过去的数据模式,以便在未来应用其发现。基于机器学习的一般定义,即计算机程序从关于某类任务 T 和性能测量 P 的经验 E 中学习,如果其在 T 中任务的性能(按 P 测量)随着经验 E 的增加而提高,则该任务将被调查。机器学习的最新工具之一是深度神经网络(DNN)。深度神经网络 (DNN) 是一种人工神经网络,在输入层和输出层之间具有多个隐藏单元层。例如,人们可以使用超过 1.2 亿个优质和次级抵押贷款的数据集构建深度神经网络,用于对抵押贷款拖欠和提前还款风险进行建模,并模拟抵押贷款 17 投资组合以进行风险分析。甚至发现金融领域的一些经典理论,例如有效市场假说,可能会受到深度学习的挑战。另一个动机是应用深度学习来发现市场上尚未执行的交易策略。为此,历史数据被分为两个组成部分。首先,将80%的历史数据定义为测试数据,即调查市场结构的数据。剩下的 20% 是训练数据,即神经网络以前没有见过的数据。换句话说,80% 数据的学习成果现在被应用到剩下的 20% 数据中,结果是一些金融工具确实可以进行有利可图的交易。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

多模式音乐实践提高人工耳蜗植入者言语和音乐感知表现的试验研究
  • 批准号:
    82301301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多组学分析赛马肠道微生物增强宿主运动表现的作用机制
  • 批准号:
    32360016
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华南埃迪卡拉纪Shuram事件不同表现形式的天文年代学约束
  • 批准号:
    42302129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
解析人类意志:分离自主动作和控制信念对认知表现的促进作用
  • 批准号:
    32300883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏是工作的对立面吗?游戏式工作对员工和团队绩效表现的影响机制研究
  • 批准号:
    72302024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Inter-brain synchrony analysis in teleoperated collaborative social tasks to predict collective performance
远程操作协作社交任务中的脑间同步分析以预测集体表现
  • 批准号:
    24K17253
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
  • 批准号:
    10621489
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
  • 批准号:
    10683849
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A wearable device for continuous monitoring of methadone
用于连续监测美沙酮的可穿戴设备
  • 批准号:
    10787069
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Role of Medial Prefrontal Cortex in Context-Dependent Valuation and Decision Processes
内侧前额叶皮层在上下文相关的评估和决策过程中的作用
  • 批准号:
    10658093
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了