Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION

AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择

基本信息

  • 批准号:
    ST/W006626/1
  • 负责人:
  • 金额:
    $ 11.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The technology developed in this programme will enhance atom interferometry in both the Atom Interferometry Observatory Network (AION) and MAGIS-100 projects by developing and implementing clock-laser technology and test of the methodology for very long baseline instruments. The strong scientific motivation for developing a new generation of quantum sensors stems from detailed theoretical work that shows how these instruments will push searches for certain types of dark matter beyond current boundaries and pioneer a new approach to the detection of gravity waves in a different range of frequency from the existing experiments LIGO and Virgo (thus complementing existing approaches). The long-baseline atom interferometers around the world will be networked, and there are many possible synergies through joint observations. Although gravity-wave detection on Earth provides a wealth of new information, much higher sensitivity can be achieved in space and future projects such as the Atomic Experiment for Dark Matter and Gravity Exploration in Space (AEDGE), are already being discussed.The AION instrument combines the advantages of state-of-the-art optical clocks based on Sr atoms with atom interferometry. Two clouds of atoms will be prepared at different heights along a long vertical vacuum pipe, and both clouds will be launched so that they travel upwards before coming to rest and falling back down under gravity. Such 'atomic fountains' allow a long measurement time but atoms must be cooled to temperatures less than 1 nanokelvin otherwise they spread out too much before falling back through the detection region. A vertical laser beam runs through both clouds of atoms, at different heights, so that there is common-mode rejection of noise by differential measurement.Some aspects of the required technology are being developed. In this proposal, we shall develop the narrow bandwidth (few Hz) laser systems required for an interferometer using the narrowest single-photon transition in atomic strontium; the clock transition at (698nm) which is 1000 times narrower than the transition (at 689nm) originally planned for the initial demonstrator of differential interferometry. This electronic and optical technology will be developed as reliable modules for future deployment at the site of large baseline instruments. This represents an important stepping stone towards the AION-10 device. In addition, the narrowness of the clock transition allows extremely precise velocity selection of atoms from a distribution as required for high-contrast fringes from a long interferometer sequences. Furthermore this allows rapid interleaving of interferometry sequences by the sequential selection of different velocity classes from a single transported atom cloud, without repeating the laser cooling and transport processes. This work will be supported by comprehensive simulations using efficient numerical techniques being developed in AION. The AION programme exploits synergies between STFC and EPSRC science and the strategic areas of quantum technology, computing and metrology. It brings together a consortium of experimental and theoretical particle physicists, as well as astrophysicists and instrumentation experts, quantum information scientists, experts in Sr based atomic-clock research, and atomic physicists drawn from the STFC and EPSRC communities. The quantum technologies of AION have potential applications in such varied areas as navigation and oil drilling. We will work closely with the UK Quantum Technologies Hub in sensors and metrology to develop these technologies and bring them to market.
该计划开发的技术将通过开发和实施时钟激光技术以及对超长基线仪器的方法测试来增强原子干涉观测站网络(AION)和MAGIS-100项目中的原子干涉测量。开发新一代量子传感器的强大科学动机源于详细的理论工作,该工作表明这些仪器将如何推动对某些类型的暗物质的搜索超越当前的界限,并开创一种在不同范围内检测重力波的新方法。现有实验 LIGO 和 Virgo 的频率(从而补充了现有方法)。世界各地的长基线原子干涉仪将联网,通过联合观测有很多可能的协同作用。尽管地球上的重力波探测提供了丰富的新信息,但在太空中可以实现更高的灵敏度,并且已经在讨论暗物质原子实验和太空重力探索(AEDGE)等未来项目。AION仪器结合了基于 Sr 原子的最先进光学时钟与原子干涉测量的优点。将沿着一根长的垂直真空管在不同高度准备两个原子云,两个原子云都将被发射,以便它们向上移动,然后静止并在重力作用下落回。这种“原子喷泉”允许较长的测量时间,但原子必须冷却到低于 1 纳开尔文的温度,否则它们在落回检测区域之前会散开太多。垂直激光束在不同高度穿过两个原子云,以便通过差分测量实现噪声的共模抑制。所需技术的某些方面正在开发中。在本提案中,我们将开发使用原子锶中最窄单光子跃迁的干涉仪所需的窄带宽(几赫兹)激光系统; (698nm) 的时钟跃迁比最初计划用于差分干涉测量初始演示器的跃迁(689nm)窄 1000 倍。这种电子和光学技术将被开发为可靠的模块,以便将来在大型基线仪器现场部署。这是迈向 AION-10 设备的重要垫脚石。此外,时钟跃迁的狭窄性允许从分布中极其精确地选择原子速度,以满足长干涉仪序列的高对比度条纹的要求。此外,这允许通过从单个传输的原子云中顺序选择不同的速度等级来快速交错干涉测量序列,而无需重复激光冷却和传输过程。这项工作将得到使用 AION 中开发的高效数值技术的综合模拟的支持。 AION 计划利用了 STFC 和 EPSRC 科学以及量子技术、计算和计量等战略领域之间的协同作用。它汇集了实验和理论粒子物理学家、天体物理学家和仪器专家、量子信息科学家、基于锶的原子钟研究专家以及来自 STFC 和 EPSRC 社区的原子物理学家组成的联盟。 AION的量子技术在导航和石油钻探等各个领域都有潜在的应用。我们将与英国量子技术中心在传感器和计量领域密切合作,开发这些技术并将其推向市场。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Centralised Design and Production of the Ultra-High Vacuum and Laser-Stabilisation Systems for the AION Ultra-Cold Strontium Laboratories
AION 超冷锶实验室超高真空和激光稳定系统的集中设计和生产
  • DOI:
    http://dx.10.48550/arxiv.2305.20060
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stray B
  • 通讯作者:
    Stray B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Foot其他文献

Christopher Foot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Foot', 18)}}的其他基金

Cold-atom source of strontium for Quantum Technology
用于量子技术的锶冷原子源
  • 批准号:
    EP/Y004175/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
Investigation of universal non-equilibrium dynamics using coupled 2-D quantum systems
使用耦合二维量子系统研究普遍非平衡动力学
  • 批准号:
    EP/X024601/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
Laser and stabilization package for AION
AION 的激光和稳定套件
  • 批准号:
    ST/X004899/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
AION: A UK Atom Interferometer Observatory and Network
AION:英国原子干涉仪天文台和网络
  • 批准号:
    ST/T006633/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
Investigating non-equilibrium physics and universality using two-dimensional quantum gases
使用二维量子气体研究非平衡物理和普遍性
  • 批准号:
    EP/S013105/1
  • 财政年份:
    2018
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
compact Cold-Atom Sources (cCAS)
紧凑型冷原子源 (cCAS)
  • 批准号:
    EP/R001685/1
  • 财政年份:
    2017
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
New techniques for nanokelvin condensed matter physics
纳开尔文凝聚态物理新技术
  • 批准号:
    EP/J008028/1
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
New techniques for nanokelvin condensed matter physics
纳开尔文凝聚态物理新技术
  • 批准号:
    EP/J008028/1
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
Direct quantum simulation using cold bosonic atoms in an optical lattice
使用光学晶格中的冷玻色子原子进行直接量子模拟
  • 批准号:
    EP/E010873/1
  • 财政年份:
    2007
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant
Quantum simulation using optical lattices
使用光学晶格的量子模拟
  • 批准号:
    EP/E041612/1
  • 财政年份:
    2007
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Research Grant

相似国自然基金

锂硫电池双原子催化材料的精准合成、协同作用机制及动态演变规律
  • 批准号:
    22379036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
热稳定单原子/单原子合金催化剂在富CO2天然气干重整中的催化及原位演化研究
  • 批准号:
    22372138
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锂离子电池固态电解质界面膜形成机理的原子模型
  • 批准号:
    52302302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
芯片级原子钟用高效率双功能准三维亚波长结构器件研究
  • 批准号:
    62305252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单原子镍电极调控微生物电合成系统产乙酸效能及生物膜强化机制
  • 批准号:
    22302049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ExpandQISE: Track 1: Scalable Quantum Gravimeters with Large-Momentum-Transfer Atom Interferometry
ExpandQISE:轨道 1:具有大动量转移原子干涉测量技术的可扩展量子重力仪
  • 批准号:
    2328663
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Standard Grant
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
  • 批准号:
    2308767
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Simultaneous Multiaxis Atom Interferometry for Inertial Sensing
LEAPS-MPS:用于惯性传感的同步多轴原子干涉测量
  • 批准号:
    2316595
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Standard Grant
Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
  • 批准号:
    2885950
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Studentship
Novel Atom Interferometry Techniques
新颖的原子干涉测量技术
  • 批准号:
    2884004
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了