Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
基本信息
- 批准号:ST/W003880/2
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neutrino physics has the potential to revolutionise our current understanding of the universe.The elusive neutrino is the most abundant massive particle in nature, but one of the most tricky to measure, because of its interaction properties. One hundred trillion neutrinos from the sun are passing through your body every second, but the chance of them actually stopping is incredibly small; if you lived to be one quadrillion years old, it's possible one may stop inside during your lifetime. Over the past five decades, neutrino experiments have overcome this challenge by developing new detector and particle beam technologies, however, in this relatively modern field, many properties and interactions of the neutrino remain shrouded in mystery. One puzzle is the ever-increasing number of hints that there may be more neutrinos than the three we have already discovered. Does a fourth "sterile" neutrino, exist? Could it be Dark Matter? My passion is to develop novel technology which allows me to make more precise measurements than ever before of neutrinos, to answer these questions. As a research fellow, I will use the first data from the Short Baseline Neutrino (SBN) programme: an innovative system of detectors that I spent the past seven years building, to investigate a phenomenon called neutrino oscillations. Measuring this process gives us an opportunity to probe the existence of new kinds of neutrino. Using these state-of-the-art neutrino detectors, called liquid argon Time Projection Chambers, I will measure neutrino interactions, and lead a search for sterile neutrinos with SBN.More clues can be found in a complementary search: measuring the mass of neutrinos. In the radioactive decay of tritium, an electron and a neutrino are emitted. Using what we know about the masses of the three known neutrinos, I will use energy conservation to look for evidence of a fourth.Directly measuring the neutrino mass is extremely challenging. Even though the neutrino is the most abundant massive particle in the universe, we can't precisely say what its mass is. My goal is to combine quantum measurement techniques with an emerging technology called Cyclotron Radiation Emission Spectroscopy, to create a detector which can measure the neutrino mass with unprecedented precision. Current detector technologies are unable to directly measure the absolute mass of the neutrino, but this project will lay groundwork for the ultimate future experiment: solving the neutrino mass puzzle by direct measurement.
中微子物理学有可能彻底改变我们目前对宇宙的理解。难以捉摸的中微子是自然界中最丰富的大质量粒子,但由于其相互作用特性,也是最难测量的粒子之一。每秒有一百万亿个来自太阳的中微子穿过你的身体,但它们真正停下来的机会非常小;如果你能活到一万亿岁,那么在你有生之年,有人可能会停留在里面。在过去的五年里,中微子实验通过开发新的探测器和粒子束技术克服了这一挑战,然而,在这个相对现代的领域,中微子的许多特性和相互作用仍然笼罩在神秘之中。一个谜题是,越来越多的暗示表明,中微子的数量可能比我们已经发现的三个还要多。第四个“惰性”中微子是否存在?它可能是暗物质吗?我的热情是开发新技术,使我能够对中微子进行比以往更精确的测量,以回答这些问题。作为一名研究员,我将使用短基线中微子 (SBN) 计划的第一批数据来研究一种称为中微子振荡的现象,该计划是我在过去七年中构建的一个创新探测器系统。测量这个过程使我们有机会探索新型中微子的存在。使用这些最先进的中微子探测器(称为液氩时间投影室),我将测量中微子相互作用,并利用 SBN 领导对惰性中微子的搜索。更多线索可以在补充搜索中找到:测量中微子的质量。在氚的放射性衰变中,发射出电子和中微子。利用我们对三种已知中微子质量的了解,我将利用能量守恒来寻找第四种中微子的证据。直接测量中微子质量极具挑战性。尽管中微子是宇宙中最丰富的大质量粒子,但我们无法准确地说出它的质量是多少。我的目标是将量子测量技术与称为回旋辐射发射光谱学的新兴技术相结合,创建一种能够以前所未有的精度测量中微子质量的探测器。目前的探测器技术无法直接测量中微子的绝对质量,但该项目将为未来的最终实验奠定基础:通过直接测量解决中微子质量难题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola McConkey其他文献
Nicola McConkey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola McConkey', 18)}}的其他基金
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/1 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Fellowship
相似国自然基金
让我们一起线上购物吧!探究影响消费者协同购物效果的因素及其作用机理
- 批准号:72372112
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/1 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Fellowship
Precise Control of Color Center Formation in a Single Carbon Nanotube Using Microspectroscopy
使用显微光谱精确控制单个碳纳米管中色心的形成
- 批准号:
20K15112 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of photoexcited carrier transfer between single semiconductor nanoparticle and adsorbed molecules
单个半导体纳米颗粒与吸附分子之间光激发载流子转移的研究
- 批准号:
20K15130 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Search for assembly intermediates of photosynthetic proteins by high-throughput single-molecule spectroscopy
通过高通量单分子光谱寻找光合蛋白的组装中间体
- 批准号:
19H03187 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
磁場中単一顕微分光による一次元量子細線の励起子微細構造の研究
磁场中单显微光谱研究一维量子线中激子精细结构
- 批准号:
09J01890 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for JSPS Fellows