Proposal for IPPP Consolidated Grant (2023-2026)

IPPP 综合赠款提案(2023-2026 年)

基本信息

  • 批准号:
    ST/X000745/1
  • 负责人:
  • 金额:
    $ 201.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Particle physics research informs us about the nature of matter on microscopic scales. As we step down the length scales below the length scale of the atom, 10^(-10) meters, and past the length scale of the atomic nucleus, 10^(-15) meters, we enter the realm of particle physics. In this realm, there are three well-identified interactions. First, the strong interactions are responsible for the binding of quarks and gluons to produce protons, neutrons, and other particles collectively called hadrons. Second, the electroweak interactions, responsible for the radiation of photons (light) from matter and the radiation of the weak force carriers, the W and Z bosons, were discovered at CERN in 1983. Third, the interactions of the Higgs bosons. The Higgs boson was discovered at CERN in 2012. The interactions of all of these ingredients are controlled by a mathematical structure known as the Standard Model (SM) gauge theory of electromagnetic, weak and strong interactions. This theory has so far withstood all the challenges posed by various accelerators, of which the latest and most energetic is the LHC. The SM is confirmed - with the unification of electromagnetism and weak interactions proved and tested to one part per mille. Strong interaction effects have been tested to the per cent level.Since 2015, the Large Hadron Collider (LHC) has been accelerating and colliding protons at much higher energies than ever before, close to the design energy of 14 TeV. This higher energy probes much shorter distance scales than ever before. The high energy reach of the LHC will also allow the detailed study of the Higgs boson and exploration of TeV scale physics. However, the LHC experiments are significantly more complex than any previous particle physics experiment. Identifying the nature of physics at the TeV scale will require intense collaborative efforts between experimentalists and theorists. On the theoretical side, high-precision calculations of SM processes are needed to distinguish possible signals of new physics from SM backgrounds. Possible hints of new physics need to be compared with different models of physics beyond the SM to disentangle TeV-scale physics' underlying structure. The IPPP has already established close connections with the UK and international experimental groups and is perfectly placed to help maximise the UK contribution to understanding the LHC data. There is also a strong effort in planning and designing the next generation of particle physics experiments. The IPPP will continue its role in assessing the physics potential and the design of future accelerators. The Standard Model received remarkable confirmation in recent years with the discovery of the Higgs, a monumental leap forwards in understanding that happens maybe once a century. That discovery completed the Standard Model and offered the first look at electroweak symmetry breaking. And yet many deep questions have so far remained tantalisingly untouched. These questions range from the profoundly conceptual to the observational, and they are the most promising opportunities for progress. Indeed so far, no deviation from the Standard Model has been observed, and it seems that many of the more straightforward solutions to these questions are not realised as we thought they might be. Therefore, all possible avenues and ideas must be explored, with a multi-faceted approach that confronts theoretical expectations with the whole gamut of available evidence from astrophysical to (in)direct detection to the collider. Consequently, the IPPP will increase its research endeavours in the science questions that can be answered with non-collider experiments. This includes the search for light dark matter, axions, the study of stochastic gravitational waves spectra and non-perturbative phenomena.
粒子物理学研究让我们了解微观尺度上的物质本质。当我们将长度尺度降低到原子长度尺度以下(10^(-10) 米)并超过原子核长度尺度(10^(-15) 米)时,我们就进入了粒子物理领域。在这个领域中,存在三种明确的相互作用。首先,强相互作用导致夸克和胶子结合产生质子、中子和其他统称为强子的粒子。其次,1983 年欧洲核子研究中心发现了电弱相互作用,它导致了物质中光子(光)的辐射以及弱力载流子 W 和 Z 玻色子的辐射。第三,希格斯玻色子的相互作用。希格斯玻色子于 2012 年在欧洲核子研究中心 (CERN) 被发现。所有这些成分的相互作用均由称为电磁、弱相互作用和强相互作用的标准模型 (SM) 规范理论的数学结构控制。这一理论迄今为止经受住了各种加速器带来的所有挑战,其中最新、最有活力的是大型强子对撞机(LHC)。 SM 得到了证实——电磁和弱相互作用的统一得到了千分之一的证明和测试。强相互作用效应已测试到百分比水平。自 2015 年以来,大型强子对撞机 (LHC) 一直在以比以往更高的能量加速和碰撞质子,接近 14 TeV 的设计能量。这种更高的能量探测比以往更短的距离尺度。大型强子对撞机的高能量范围也将允许对希格斯玻色子进行详细研究并探索 TeV 尺度的物理。然而,大型强子对撞机实验比以前的任何粒子物理实验都要复杂得多。在 TeV 尺度上识别物理学的本质需要实验学家和理论学家之间的密切合作。在理论方面,需要对 SM 过程进行高精度计算,以将新物理的可能信号与 SM 背景区分开来。新物理的可能线索需要与 SM 之外的不同物理模型进行比较,以理清 TeV 尺度物理的基础结构。 IPPP 已经与英国和国际实验团体建立了密切的联系,并且完全有能力帮助英国最大限度地理解 LHC 数据。在规划和设计下一代粒子物理实验方面也付出了巨大的努力。 IPPP 将继续在评估物理潜力和未来加速器的设计方面发挥作用。近年来,随着希格斯粒子的发现,标准模型得到了显着的证实,这是理解上的一个巨大飞跃,这种情况可能一个世纪才会发生一次。这一发现完成了标准模型,并首次展示了电弱对称性破缺。然而,许多深层次的问题迄今为止仍然没有触及。这些问题的范围从深刻的概念性到观察性,它们是最有希望取得进展的机会。事实上,到目前为止,还没有观察到与标准模型的偏差,而且似乎这些问题的许多更直接的解决方案并没有像我们想象的那样实现。因此,必须探索所有可能的途径和想法,采用多方面的方法,用从天体物理学到(内)直接探测到对撞机的所有可用证据来应对理论预期。因此,IPPP 将加大对可以通过非对撞机实验回答的科学问题的研究力度。这包括寻找光暗物质、轴子、研究随机引力波谱和非微扰现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Spannowsky其他文献

VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider
HL-LHC 和 100 TeV pp 对撞机上的 VBS W±W±H 生产
  • DOI:
    10.1142/s0217751x17501068
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Christoph Englert;Qiang Li;Michael Spannowsky;Mengmeng Wang;Lei Wang
  • 通讯作者:
    Lei Wang

Michael Spannowsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Spannowsky', 18)}}的其他基金

STFC IAA Durham
STFC IAA 达勒姆
  • 批准号:
    ST/X508135/1
  • 财政年份:
    2022
  • 资助金额:
    $ 201.91万
  • 项目类别:
    Research Grant
IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
  • 批准号:
    ST/X003167/1
  • 财政年份:
    2022
  • 资助金额:
    $ 201.91万
  • 项目类别:
    Research Grant

相似海外基金

IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
  • 批准号:
    ST/X003167/1
  • 财政年份:
    2022
  • 资助金额:
    $ 201.91万
  • 项目类别:
    Research Grant
Proposal for IPPP (UK National Phenomenology Institute), 2020-2023
IPPP(英国国家现象学研究所)提案,2020-2023
  • 批准号:
    ST/T001011/1
  • 财政年份:
    2020
  • 资助金额:
    $ 201.91万
  • 项目类别:
    Research Grant
Wakeham efficiency funds for IPPP
韦克汉姆 IPPP 效率基金
  • 批准号:
    ST/K001159/1
  • 财政年份:
    2011
  • 资助金额:
    $ 201.91万
  • 项目类别:
    Research Grant
CTEQ-IPPP School on QCD Analysis and Phenomenology; St. Andrews, SCOTLAND
CTEQ-IPPP QCD 分析和现象学学院;
  • 批准号:
    0098750
  • 财政年份:
    2001
  • 资助金额:
    $ 201.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了