Proposal for IPPP Consolidated Grant (2023-2026)
IPPP 综合赠款提案(2023-2026 年)
基本信息
- 批准号:ST/X000745/1
- 负责人:
- 金额:$ 201.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Particle physics research informs us about the nature of matter on microscopic scales. As we step down the length scales below the length scale of the atom, 10^(-10) meters, and past the length scale of the atomic nucleus, 10^(-15) meters, we enter the realm of particle physics. In this realm, there are three well-identified interactions. First, the strong interactions are responsible for the binding of quarks and gluons to produce protons, neutrons, and other particles collectively called hadrons. Second, the electroweak interactions, responsible for the radiation of photons (light) from matter and the radiation of the weak force carriers, the W and Z bosons, were discovered at CERN in 1983. Third, the interactions of the Higgs bosons. The Higgs boson was discovered at CERN in 2012. The interactions of all of these ingredients are controlled by a mathematical structure known as the Standard Model (SM) gauge theory of electromagnetic, weak and strong interactions. This theory has so far withstood all the challenges posed by various accelerators, of which the latest and most energetic is the LHC. The SM is confirmed - with the unification of electromagnetism and weak interactions proved and tested to one part per mille. Strong interaction effects have been tested to the per cent level.Since 2015, the Large Hadron Collider (LHC) has been accelerating and colliding protons at much higher energies than ever before, close to the design energy of 14 TeV. This higher energy probes much shorter distance scales than ever before. The high energy reach of the LHC will also allow the detailed study of the Higgs boson and exploration of TeV scale physics. However, the LHC experiments are significantly more complex than any previous particle physics experiment. Identifying the nature of physics at the TeV scale will require intense collaborative efforts between experimentalists and theorists. On the theoretical side, high-precision calculations of SM processes are needed to distinguish possible signals of new physics from SM backgrounds. Possible hints of new physics need to be compared with different models of physics beyond the SM to disentangle TeV-scale physics' underlying structure. The IPPP has already established close connections with the UK and international experimental groups and is perfectly placed to help maximise the UK contribution to understanding the LHC data. There is also a strong effort in planning and designing the next generation of particle physics experiments. The IPPP will continue its role in assessing the physics potential and the design of future accelerators. The Standard Model received remarkable confirmation in recent years with the discovery of the Higgs, a monumental leap forwards in understanding that happens maybe once a century. That discovery completed the Standard Model and offered the first look at electroweak symmetry breaking. And yet many deep questions have so far remained tantalisingly untouched. These questions range from the profoundly conceptual to the observational, and they are the most promising opportunities for progress. Indeed so far, no deviation from the Standard Model has been observed, and it seems that many of the more straightforward solutions to these questions are not realised as we thought they might be. Therefore, all possible avenues and ideas must be explored, with a multi-faceted approach that confronts theoretical expectations with the whole gamut of available evidence from astrophysical to (in)direct detection to the collider. Consequently, the IPPP will increase its research endeavours in the science questions that can be answered with non-collider experiments. This includes the search for light dark matter, axions, the study of stochastic gravitational waves spectra and non-perturbative phenomena.
粒子物理研究向我们告知微观尺度上物质的性质。当我们向下逐渐降低长度尺度以下原子的长度尺度,10^(-10)米,并超过原子核的长度尺度,即10^(-15)米,我们进入了粒子物理的领域。在这个领域中,有三种良好的互动。首先,强相互作用负责夸克和胶子的结合,以产生质子,中子和其他颗粒,共同称为Hadron。其次,造成物质辐射(光)辐射的电动相互作用和弱力载体的辐射,W和Z玻色子在1983年在CERN发现。第三,希格斯玻色子的相互作用。希格斯玻色子于2012年在CERN发现。所有这些成分的相互作用均由称为标准模型(SM)电磁,弱和强相互作用的数学结构控制。到目前为止,这一理论已经承受了各种加速器所面临的所有挑战,最新和最有活力的是LHC。 SM被确认 - 通过电磁和弱相互作用的统一证明并测试了每毫米一部分。在2015年,大型强子对撞机(LHC)的加速和碰撞质子的能量比以往任何时候都更高,接近14 TEV的设计能量,质子的加速和碰撞质子已经高得多。这种较高的能量比以往任何时候都探究距离的尺寸要短得多。 LHC的高能量覆盖范围还将允许对Higgs玻色子的详细研究和TEV量表物理学的探索。但是,LHC实验比任何以前的粒子物理实验都要复杂得多。在TEV量表上识别物理学的性质将需要实验者和理论家之间的巨大协作努力。在理论方面,需要对SM过程的高精度计算来区分新物理学的可能信号与SM背景。需要将新物理学的可能提示与SM之外的不同物理模型进行比较,以将TEV规模物理学的基础结构删除。 IPPP已经与英国和国际实验小组建立了密切的联系,并且非常适合最大化英国对了解LHC数据的贡献。在计划和设计下一代粒子物理实验方面也有巨大的努力。 IPPP将继续其在评估物理潜力和未来加速器设计方面的作用。近年来,随着希格斯的发现,标准模型获得了显着的确认,这是一个巨大的飞跃,在理解中可能发生了一次。该发现完成了标准型号,并首先对Electroweak对称性破坏了。然而,到目前为止,许多深刻的问题仍然令人着迷。这些问题的范围从深刻的概念到观察性,它们是进步的最有希望的机会。确实,到目前为止,尚未观察到与标准模型的偏差,而且似乎许多对这些问题更直接的解决方案并未像我们认为的那样实现。因此,必须采用多方面的方法来探讨所有可能的途径和思想,该方法与从天体物理学到(在)直接检测对撞机的全部证据面对理论期望。因此,IPPP将在科学问题中增加其研究努力,这些问题可以通过非责任实验来回答。这包括寻找光暗物质,轴,研究随机引力波光谱和非扰动现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Spannowsky其他文献
VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider
HL-LHC 和 100 TeV pp 对撞机上的 VBS W±W±H 生产
- DOI:
10.1142/s0217751x17501068 - 发表时间:
2017-06 - 期刊:
- 影响因子:1.6
- 作者:
Christoph Englert;Qiang Li;Michael Spannowsky;Mengmeng Wang;Lei Wang - 通讯作者:
Lei Wang
Michael Spannowsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Spannowsky', 18)}}的其他基金
IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
- 批准号:
ST/X003167/1 - 财政年份:2022
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
相似海外基金
IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
- 批准号:
ST/X003167/1 - 财政年份:2022
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
Proposal for IPPP (UK National Phenomenology Institute), 2020-2023
IPPP(英国国家现象学研究所)提案,2020-2023
- 批准号:
ST/T001011/1 - 财政年份:2020
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
Wakeham efficiency funds for IPPP
韦克汉姆 IPPP 效率基金
- 批准号:
ST/K001159/1 - 财政年份:2011
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
CTEQ-IPPP School on QCD Analysis and Phenomenology; St. Andrews, SCOTLAND
CTEQ-IPPP QCD 分析和现象学学院;
- 批准号:
0098750 - 财政年份:2001
- 资助金额:
$ 201.91万 - 项目类别:
Standard Grant