Reading Solar System Science
阅读太阳系科学
基本信息
- 批准号:ST/R000921/1
- 负责人:
- 金额:$ 129.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We combine seven research projects in this proposal that will separately and collectively advance our knowledge and understanding of the Sun, interplanetary space, and planets throughout our solar system. We have two main themes - to understand the science behind "Space Weather" and to investigate planets in our solar system to better understand their potential for sustaining life. Space Weather describes the variability of our space environment that can affect technological infrastructure upon which we rely. For example, artificial satellites, aviation systems, power distribution networks and communications can all be affected by the variability of plasma and magnetic fields in near-Earth space. This variability is controlled by the Sun's magnetic cycle and carried by the solar wind through the solar system. Our research will help us understand how the Sun's magnetic field varies from one solar cycle to the next, and will allow us to predict future magnetic activity over the next few decades. We will determine how the interplanetary, or heliospheric, magnetic field is created and destroyed close to the Sun. Results from these two projects will be validated by the upcoming ESA mission Solar Orbiter, due to launch in 2018 and provide new and deep understanding of the nature of the magnetic solar cycle.We will investigate how large solar wind structures, known as Coronal Mass Ejections, change as they are transported throughout the heliosphere. We will use the same data assimilation techniques used worldwide in numerical weather prediction and climate modelling to study the source of the slow solar wind, with velocities of 300-500km/s. These research projects will further our understanding of how the Sun influences near-Earth space and our Space Weather. At Earth, we will investigate how the solar wind controls conditions inside Earth's magnetic bubble, known as the magnetosphere. In this region, the material is so tenuous that collisions between particles are very rare. Instead, the electrons and ions in near-Earth space undergo interactions with electromagnetic waves that change their energy and direction and can lead to significant electron acceleration to relativistic speeds. We will specifically investigate how the electromagnetic waves are energised by variability within the magnetosphere, driven by the variable conditions of the solar wind.The ability of the icy moons around Jupiter to support life will be investigated using state-of-the-art oceanographic models. One of the key factors in the search for life is the availability of nutrients, but we currently have no way of accurately determining what lies under the ice on Europa and Ganymede. We will use modelling to predict how different salinity levels in the sub-ice ocean will influence the space-based observations made by ESA's Jupiter Icy Moons Explorer JUICE, which will launch in 2022 and is due to visit the Jovian system in 2030. The new understanding from this project will allow scientists to use observations from JUICE to probe deep underneath the ice for signs that the moons have the potential to support life.We will investigate the electrification of clouds at Venus. Venus has no protective magnetic field like the Earth or Mercury, and it's proximity to the sun means that space weather effects on Venus' atmosphere may be very different to space weather interactions at other planets. We will build a new laboratory analogue of Venus' atmosphere to determine how droplets within clouds in Venus unique atmosphere become charged. This work is very important to understand the global electrical circuit on Venus and how it is effected by solar activity.
我们在该提案中结合了七个研究项目,这些项目将单独或共同推进我们对太阳、行星际空间和整个太阳系行星的认识和理解。我们有两个主题——了解“太空天气”背后的科学,并研究太阳系中的行星,以更好地了解它们维持生命的潜力。空间天气描述了我们的空间环境的变化,它会影响我们所依赖的技术基础设施。例如,人造卫星、航空系统、配电网络和通信都可能受到近地空间等离子体和磁场变化的影响。这种变化是由太阳的磁循环控制的,并由穿过太阳系的太阳风携带。我们的研究将帮助我们了解太阳磁场在一个太阳周期与下一个太阳周期之间如何变化,并使我们能够预测未来几十年的磁活动。我们将确定靠近太阳的行星际磁场或日光层磁场是如何产生和破坏的。这两个项目的结果将由即将于 2018 年发射的欧空局太阳轨道飞行器任务进行验证,并为太阳磁周期的本质提供新的、深入的了解。我们将研究大型太阳风结构(即日冕物质抛射)的大小,当它们穿过日光层时会发生变化。我们将使用全球数值天气预报和气候建模中使用的相同数据同化技术来研究速度为 300-500 公里/秒的慢速太阳风的来源。这些研究项目将进一步了解太阳如何影响近地空间和太空天气。在地球上,我们将研究太阳风如何控制地球磁泡(称为磁层)内的条件。在这个区域,物质非常脆弱,粒子之间的碰撞非常罕见。相反,近地空间中的电子和离子会与电磁波相互作用,从而改变它们的能量和方向,并可能导致电子显着加速到相对论速度。我们将专门研究在太阳风的变化条件驱动下,磁层内的变化如何激发电磁波。将使用最先进的海洋学模型研究木星周围冰冷卫星支持生命的能力。寻找生命的关键因素之一是营养物质的可用性,但我们目前无法准确确定木卫二和木卫三冰层下的物质。我们将使用模型来预测冰下海洋的不同盐度水平将如何影响 ESA 木星冰卫星探测器 JUICE 进行的天基观测,该探测器将于 2022 年发射,预计于 2030 年访问木星系统。从这个项目中获得的理解将使科学家能够利用 JUICE 的观测结果来探测冰层深处,寻找卫星有可能支持生命的迹象。我们将研究云的带电情况金星。金星没有像地球或水星那样的保护性磁场,而且它靠近太阳,这意味着太空天气对金星大气层的影响可能与其他行星上的太空天气相互作用有很大不同。我们将建立一个新的金星大气实验室模拟模型,以确定金星独特大气中云层中的液滴如何带电。这项工作对于了解金星上的全球电路及其如何受到太阳活动的影响非常重要。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset
根据云高计数据集得出的阿联酋沙漠降水特征
- DOI:http://dx.10.3390/atmos12101245
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Airey M
- 通讯作者:Airey M
HUXt -- An open source, computationally efficient reduced-physics solar wind model, written in Python
HUXt——一种开源、计算高效的简化物理太阳风模型,用 Python 编写
- DOI:http://dx.10.48550/arxiv.2210.00455
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Barnard L
- 通讯作者:Barnard L
Particle-in-Cell Experiments Examine Electron Diffusion by Whistler-Mode Waves: 2. Quasi-Linear and Nonlinear Dynamics
细胞内粒子实验通过惠斯勒模式波检查电子扩散:2. 准线性和非线性动力学
- DOI:http://dx.10.1029/2020ja027949
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Allanson O
- 通讯作者:Allanson O
Particle-in-cell Experiments Examine Electron Diffusion by Whistler-mode Waves: 1. Benchmarking With a Cold Plasma
细胞内粒子实验通过惠斯勒模式波检查电子扩散:1. 使用冷等离子体进行基准测试
- DOI:http://dx.10.1029/2019ja027088
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Allanson O
- 通讯作者:Allanson O
HUXt-An open source, computationally efficient reduced-physics solar wind model, written in Python
HUXt-一种开源、计算高效的简化物理太阳风模型,用 Python 编写
- DOI:http://dx.10.3389/fphy.2022.1005621
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Barnard L
- 通讯作者:Barnard L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Emily Jane Watt其他文献
Clare Emily Jane Watt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Emily Jane Watt', 18)}}的其他基金
Effects of Temporal Variability on Wave-Particle Interactions in Magnetospheric Plasma
磁层等离子体中波粒相互作用的时间变化的影响
- 批准号:
ST/W000369/1 - 财政年份:2021
- 资助金额:
$ 129.64万 - 项目类别:
Research Grant
Satellite Radiation Risk Forecasts (Sat-Risk)
卫星辐射风险预测(Sat-Risk)
- 批准号:
NE/V002759/1 - 财政年份:2020
- 资助金额:
$ 129.64万 - 项目类别:
Research Grant
Determining energy pathways for the energisation of radiation belt electrons by very low frequency waves
确定极低频波为辐射带电子提供能量的能量路径
- 批准号:
ST/W002078/1 - 财政年份:2020
- 资助金额:
$ 129.64万 - 项目类别:
Research Grant
Modelling the acceleration, transport and loss of radiation belt electrons to protect satellites from space weather (Rad-Sat)
对辐射带电子的加速、传输和损失进行建模,以保护卫星免受空间天气的影响 (Rad-Sat)
- 批准号:
NE/P017274/2 - 财政年份:2020
- 资助金额:
$ 129.64万 - 项目类别:
Research Grant
Satellite Radiation Risk Forecasts (Sat-Risk)
卫星辐射风险预测(Sat-Risk)
- 批准号:
NE/V002759/2 - 财政年份:2020
- 资助金额:
$ 129.64万 - 项目类别:
Research Grant
Modelling the acceleration, transport and loss of radiation belt electrons to protect satellites from space weather (Rad-Sat)
对辐射带电子的加速、传输和损失进行建模,以保护卫星免受空间天气的影响 (Rad-Sat)
- 批准号:
NE/P017274/1 - 财政年份:2017
- 资助金额:
$ 129.64万 - 项目类别:
Research Grant
相似国自然基金
基于光谱选择性吸收/透射的复合聚光太阳能PV/T系统综合性能研究
- 批准号:52306237
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光导纤维内通光模式下太阳能相变蓄热系统蓄热性能的研究
- 批准号:52302256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太阳能驱动电解水制氢系统的时空协同能质传输调控机理
- 批准号:52376060
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多物理场分析的苜蓿动态干燥机理及太阳能-热泵干燥系统优化研究
- 批准号:32360852
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于太阳能光热转换的相变集热/蓄热一体化系统传热性能研究
- 批准号:52378111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Planet Formation at Solar System Scales with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜观察太阳系行星的形成
- 批准号:
DP230101439 - 财政年份:2023
- 资助金额:
$ 129.64万 - 项目类别:
Discovery Projects
Research on the fractionation process of moderately volatile elements in the early Solar System based on iron sulfide formation experiments
基于硫化铁形成实验的早期太阳系中挥发性元素分馏过程研究
- 批准号:
22KJ0568 - 财政年份:2023
- 资助金额:
$ 129.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: GLOW: The Long-Term Histories of Geologically Active Solar System Moons from Isotope Geochemistry
职业:发光:同位素地球化学中地质活跃的太阳系卫星的长期历史
- 批准号:
2238344 - 财政年份:2023
- 资助金额:
$ 129.64万 - 项目类别:
Continuing Grant
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
- 批准号:
2308360 - 财政年份:2023
- 资助金额:
$ 129.64万 - 项目类别:
Standard Grant
BIOAVAILABILITY OF ORGANICS FOR LIFE IN THE SOLAR SYSTEM
太阳系生命有机物的生物利用度
- 批准号:
2903266 - 财政年份:2023
- 资助金额:
$ 129.64万 - 项目类别:
Studentship