Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

用于暗物质和宇宙学的量子增强超流体技术

基本信息

  • 批准号:
    ST/T006773/1
  • 负责人:
  • 金额:
    $ 162.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The QUEST-DMC programme seeks to answer some of the most fundamental questions facing modern physics: What is the physics of the early universe? What is the nature of dark matter? What is the origin of the matter-antimatter asymmetry? We will focus on the investigation of two core building blocks of early universe cosmology, which may be fundamentally linked; the identity and nature of dark matter and the physics of phase transitions. By combining a macroscopic quantum system, superfluid helium-3 (3He), with state-of-the-art quantum technologies we will pioneer a new dark matter search experiment with unprecedented discovery potential. In parallel we will use the unique properties of superfluid 3He as a quantum simulator of phase transitions in the early universe. Dark Matter plays a vital role in the evolution of the universe, for example, it played a central role in the formation of structure in early universe and today plays a key role in stopping galaxies flying apart. The focus of dark matter studies and searches to date has been on Weakly Interacting Massive Particles (WIMPs) whose predicted mass range is broadly speaking between 10-1000 times that of the proton. The direct, indirect and collider searches for this dark matter candidate to date have been extensive but ultimately unsuccessful. There is a strong motivation to widen the search. The fact that the universe only consists of matter with no anti-matter requires explanation, since it is reasonable to assume that matter and anti-matter were produced in equal quantities in the Big Bang. This implies that during the evolution of the universe a process took place that dynamically generated the asymmetry between matter and anti-matter. Models linking the dynamics of dark matter with the generation of the matter/anti-matter asymmetry naturally predict a mass scale of dark matter that is close to the mass of the proton, of order 1 GeV/c2, suggesting an alternative target mass range to the standard WIMP. This project will create and operate a detector for the direct search of dark matter with sub-GeV masses using superfluid helium-3 as a target with world-leading sensitivity. The second major component of this project is a detailed investigation of the physics of phase transitions. Phase transitions are a key prediction of the symmetry-breaking paradigm of the Standard Model of particle physics in extreme conditions, such as those of the early universe or inside neutron stars. A first-order phase transition produces a characteristic gravitational wave signature and forms a leading motivation for gravitational wave searches. According to our current understanding of the mechanism of phase transitions, called nucleation theory, no gravitational waves are predicted in Standard Model. If gravitational waves are detected and their origins can be linked to a phase transition in the early universe then this would be evidence of Physics beyond the Standard Model of particle physics, with high impact on our understanding of fundamental physics. It is critical that the physics of phase transitions is tested so that experiments such as the approved European Space Agency mission LISA due for launch in 2034 are fully exploited. This project will do this using phase transitions between different quantum vacua in superfluid 3He, under controlled conditions, as a quantum analogue. This programme brings together the frontiers of cosmology, ultralow temperatures and quantum technology.Both experiments exploit the unique properties of superfluid helium-3, cooled to 100 microkelvin above absolute zero. It will rely on a range of state-of-the-art superconducting quantum sensors, and nanofabricated structures such as nanobeam resonators, and structured nanoscale confinement. Future developments in quantum technologies will generate further improvements in sensitivity and range of the sub-GeV dark matter search in the longer term.
Quest-DMC计划试图回答现代物理学面临的一些最根本的问题:早期宇宙的物理学是什么?暗物质的本质是什么?物质 - 抗逆不是对称性的起源是什么?我们将重点关注对早期宇宙宇宙学的两个核心构建基块的调查,这可能是从根本上联系起来的。暗物质的身份和性质以及相变的物理学。通过将宏观量子系统,超流体氦-3(3HE)与最先进的量子技术相结合,我们将开创一个新的暗物质搜索实验,具有前所未有的发现潜力。同时,我们将使用超氟3HE的独特属性作为早期宇宙中相变的量子模拟器。例如,暗物质在宇宙的发展中起着至关重要的作用,例如,它在早期宇宙的结构形成中发挥了核心作用,如今,它在阻止星系分开中起着关键作用。迄今为止,暗物质研究和搜索的重点是弱相互作用的巨大颗粒(WIMP),其预测的质量范围广泛地说是质子的10-1000倍。迄今为止,直接,间接和对撞机的搜索是广泛的,但最终失败了。有很大的动力来扩大搜索。宇宙仅由物质组成而没有反物质的事实需要解释,因为可以合理地假设物质和反物质在大爆炸中相等地生产。这意味着在宇宙的演变中,发生了一个过程,该过程动态地产生了物质和反物质之间的不对称性。将暗物质的动力学与物质/抗物质不对称的产生联系起来的模型自然预测了深色物质的质量尺度,即接近质子的质量,即1 GEV/C2,这表明标准wimp的替代目标质量范围。该项目将创建并操作一个检测器,用于直接搜索暗物质,并使用Superfluid helium-3作为具有世界领先灵敏度的目标。该项目的第二个主要组成部分是对相转换物理学的详细研究。相变是在极端条件下(例如早期宇宙或中子恒星内部的粒子物理)标准模型的对称性范式的关键预测。一阶相变会产生特征性的引力波特征,并构成引力波搜索的主要动机。根据我们目前对相变机理的理解,称为成核理论,在标准模型中没有预测引力波。如果检测到引力波,并且它们的起源可以与早期宇宙中的相变相关,那么这将是粒子物理学标准模型以外的物理学的证据,对我们对基本物理学的理解很大。至关重要的是,对相过渡的物理学进行了测试,以便完全利用了诸如欧洲航天局批准的欧洲航天局Mission Lisa之类的实验。该项目将使用在受控条件下以量子类似物为量子的3HE中不同量子真空吸尘器之间的相变来做到这一点。该程序汇集了宇宙学,超低温度和量子技术的前沿。两项实验可利用超氟3的独特特性,在绝对零以上冷却至100 microkelvin。它将依靠一系列最先进的超导量子传感器以及纳米制造的结构,例如纳米仪谐振器和结构化的纳米级限制。从长远来看,量子技术的未来发展将进一步改善Sub-GEV暗物质搜索的灵敏度和范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Haley其他文献

Richard Haley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Haley', 18)}}的其他基金

Development of a cryofree ultra low temperature environment for quantum enhanced sensors
量子增强传感器的无冷冻超低温环境的开发
  • 批准号:
    EP/M508354/1
  • 财政年份:
    2015
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Research Grant
Superfluid 3He at UltraLow Temperatures
超低温下的超流体 3He
  • 批准号:
    EP/L000016/1
  • 财政年份:
    2013
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Research Grant

相似国自然基金

空芯光纤增强拉曼分布式氢气传感技术研究
  • 批准号:
    62305232
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硫化氢合成酶DCD和LCD的S-亚硝基化修饰增强番茄幼苗的耐镉性
  • 批准号:
    32360743
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
  • 批准号:
    52372273
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
纳米基质增强小型质谱拉曼联用仪及其对复杂组分毒品的现场检测
  • 批准号:
    22374164
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
表面等离激元增强的深紫外透明导电复合薄膜的光电性能调控及器件应用
  • 批准号:
    62364014
  • 批准年份:
    2023
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Dark Matter Searches using Quantum Enhanced Superfluid Technologies
使用量子增强超流体技术搜索暗物质
  • 批准号:
    EP/W028417/2
  • 财政年份:
    2023
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Fellowship
Dark Matter Searches using Quantum Enhanced Superfluid Technologies
使用量子增强超流体技术搜索暗物质
  • 批准号:
    EP/W028417/1
  • 财政年份:
    2022
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Fellowship
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
  • 批准号:
    ST/T007079/1
  • 财政年份:
    2020
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Research Grant
Quantum Enhanced Superfluid Technology for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
  • 批准号:
    ST/T00682X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Research Grant
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
  • 批准号:
    ST/T006749/1
  • 财政年份:
    2020
  • 资助金额:
    $ 162.12万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了