Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
基本信息
- 批准号:ST/T006773/1
- 负责人:
- 金额:$ 162.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The QUEST-DMC programme seeks to answer some of the most fundamental questions facing modern physics: What is the physics of the early universe? What is the nature of dark matter? What is the origin of the matter-antimatter asymmetry? We will focus on the investigation of two core building blocks of early universe cosmology, which may be fundamentally linked; the identity and nature of dark matter and the physics of phase transitions. By combining a macroscopic quantum system, superfluid helium-3 (3He), with state-of-the-art quantum technologies we will pioneer a new dark matter search experiment with unprecedented discovery potential. In parallel we will use the unique properties of superfluid 3He as a quantum simulator of phase transitions in the early universe. Dark Matter plays a vital role in the evolution of the universe, for example, it played a central role in the formation of structure in early universe and today plays a key role in stopping galaxies flying apart. The focus of dark matter studies and searches to date has been on Weakly Interacting Massive Particles (WIMPs) whose predicted mass range is broadly speaking between 10-1000 times that of the proton. The direct, indirect and collider searches for this dark matter candidate to date have been extensive but ultimately unsuccessful. There is a strong motivation to widen the search. The fact that the universe only consists of matter with no anti-matter requires explanation, since it is reasonable to assume that matter and anti-matter were produced in equal quantities in the Big Bang. This implies that during the evolution of the universe a process took place that dynamically generated the asymmetry between matter and anti-matter. Models linking the dynamics of dark matter with the generation of the matter/anti-matter asymmetry naturally predict a mass scale of dark matter that is close to the mass of the proton, of order 1 GeV/c2, suggesting an alternative target mass range to the standard WIMP. This project will create and operate a detector for the direct search of dark matter with sub-GeV masses using superfluid helium-3 as a target with world-leading sensitivity. The second major component of this project is a detailed investigation of the physics of phase transitions. Phase transitions are a key prediction of the symmetry-breaking paradigm of the Standard Model of particle physics in extreme conditions, such as those of the early universe or inside neutron stars. A first-order phase transition produces a characteristic gravitational wave signature and forms a leading motivation for gravitational wave searches. According to our current understanding of the mechanism of phase transitions, called nucleation theory, no gravitational waves are predicted in Standard Model. If gravitational waves are detected and their origins can be linked to a phase transition in the early universe then this would be evidence of Physics beyond the Standard Model of particle physics, with high impact on our understanding of fundamental physics. It is critical that the physics of phase transitions is tested so that experiments such as the approved European Space Agency mission LISA due for launch in 2034 are fully exploited. This project will do this using phase transitions between different quantum vacua in superfluid 3He, under controlled conditions, as a quantum analogue. This programme brings together the frontiers of cosmology, ultralow temperatures and quantum technology.Both experiments exploit the unique properties of superfluid helium-3, cooled to 100 microkelvin above absolute zero. It will rely on a range of state-of-the-art superconducting quantum sensors, and nanofabricated structures such as nanobeam resonators, and structured nanoscale confinement. Future developments in quantum technologies will generate further improvements in sensitivity and range of the sub-GeV dark matter search in the longer term.
QUEST-DMC 计划旨在回答现代物理学面临的一些最基本的问题:早期宇宙的物理学是什么?暗物质的本质是什么?物质与反物质不对称的根源是什么?我们将重点研究早期宇宙宇宙学的两个核心组成部分,它们可能具有根本的联系;暗物质的身份和性质以及相变物理学。通过将宏观量子系统、超流氦 3 (3He) 与最先进的量子技术相结合,我们将开创具有前所未有的发现潜力的新暗物质搜索实验。与此同时,我们将利用超流体 3He 的独特性质作为早期宇宙相变的量子模拟器。暗物质在宇宙的演化中起着至关重要的作用,例如,它在早期宇宙结构的形成中发挥了核心作用,而今天在阻止星系飞散方面发挥着关键作用。迄今为止,暗物质研究和搜索的焦点一直集中在弱相互作用大质量粒子 (WIMP) 上,其预测质量范围大致为质子质量的 10-1000 倍。迄今为止,对这种暗物质候选者的直接、间接和对撞机搜索已经广泛但最终没有成功。人们有强烈的动机去扩大搜索范围。宇宙仅由物质组成而没有反物质这一事实需要解释,因为可以合理地假设物质和反物质在大爆炸中产生的数量相等。这意味着在宇宙演化过程中,发生了一个动态产生物质与反物质之间不对称性的过程。将暗物质动力学与物质/反物质不对称性的产生联系起来的模型自然地预测了暗物质的质量尺度,该质量尺度接近质子的质量,数量级为 1 GeV/c2,这表明了一个替代的目标质量范围标准 WIMP。该项目将创建并运行一个探测器,以超流氦 3 作为目标,以世界领先的灵敏度直接搜索亚 GeV 质量的暗物质。该项目的第二个主要组成部分是对相变物理学的详细研究。相变是极端条件下粒子物理标准模型对称破缺范式的关键预测,例如早期宇宙或中子星内部的条件。一阶相变产生特征引力波特征,并形成引力波搜索的主要动机。根据我们目前对相变机制(称为成核理论)的理解,标准模型中没有预测引力波。如果引力波被探测到,并且它们的起源可以与早期宇宙的相变联系起来,那么这将是超越粒子物理学标准模型的物理学证据,对我们对基础物理学的理解产生重大影响。测试相变物理原理至关重要,这样才能充分利用已批准的欧洲航天局 LISA 任务(将于 2034 年发射)等实验。该项目将在受控条件下利用超流体 3He 中不同量子真空之间的相变作为量子类似物来实现这一目标。该项目汇集了宇宙学、超低温和量子技术的前沿技术。这两个实验都利用了超流氦 3 的独特性质,冷却至绝对零以上 100 微开尔文。它将依赖于一系列最先进的超导量子传感器和纳米制造结构(例如纳米束谐振器)和结构化纳米级限制。从长远来看,量子技术的未来发展将进一步提高亚吉电子伏暗物质搜索的灵敏度和范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Haley其他文献
Richard Haley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Haley', 18)}}的其他基金
Development of a cryofree ultra low temperature environment for quantum enhanced sensors
量子增强传感器的无冷冻超低温环境的开发
- 批准号:
EP/M508354/1 - 财政年份:2015
- 资助金额:
$ 162.12万 - 项目类别:
Research Grant
Superfluid 3He at UltraLow Temperatures
超低温下的超流体 3He
- 批准号:
EP/L000016/1 - 财政年份:2013
- 资助金额:
$ 162.12万 - 项目类别:
Research Grant
相似国自然基金
转矩密度增强型永磁游标电机变极调制和场路协同研究
- 批准号:52307061
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光控细胞焦亡和腺苷A2AR阻断的免疫增强型光动力用于黑色素瘤的研究
- 批准号:82303787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SREBF1功能增强型突变导致皮肤色素沉着的分子机制研究
- 批准号:82373500
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
增强型负热膨胀材料设计与轻质零热膨胀铝基复合材料的制备及界面结构研究
- 批准号:12374032
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于超强导热材料的大型风力发电机增强型散热系统研究
- 批准号:52377047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dark Matter Searches using Quantum Enhanced Superfluid Technologies
使用量子增强超流体技术搜索暗物质
- 批准号:
EP/W028417/2 - 财政年份:2023
- 资助金额:
$ 162.12万 - 项目类别:
Fellowship
Dark Matter Searches using Quantum Enhanced Superfluid Technologies
使用量子增强超流体技术搜索暗物质
- 批准号:
EP/W028417/1 - 财政年份:2022
- 资助金额:
$ 162.12万 - 项目类别:
Fellowship
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
- 批准号:
ST/T007079/1 - 财政年份:2020
- 资助金额:
$ 162.12万 - 项目类别:
Research Grant
Quantum Enhanced Superfluid Technology for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
- 批准号:
ST/T00682X/1 - 财政年份:2020
- 资助金额:
$ 162.12万 - 项目类别:
Research Grant
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
- 批准号:
ST/T006749/1 - 财政年份:2020
- 资助金额:
$ 162.12万 - 项目类别:
Research Grant