Production of high quality electron bunches in AWAKE Run 2
在 AWAKE Run 2 中生产高质量电子束
基本信息
- 批准号:ST/T001879/1
- 负责人:
- 金额:$ 36.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last fifty years, accelerators of ever increasing energy and size have allowed us to probe the fundamental structure of the physical world. This has culminated in the Large Hadron Collider at CERN, Geneva, a 27-km long accelerator which has discovered the Higgs Boson and is, amongst other things, searching for new phenomena such as Supersymmetry. Using current accelerator technology, future high energy colliders will be of similar length or even longer. As an alternative, we are pursuing a new technology which would allow a reduction by about a factor of ten in length and hence would be expected to reduce the cost by a significant fraction.The advanced proton-driven plasma wakefield experiment (AWAKE) presented here uses a high-energy proton beam, such as those at CERN, to enter into a plasma. The free, negatively-charged electrons in the plasma are knocked out of their position by the protons, but are then attracted back by the positively-charged ions, creating a high-gradient electric "wakefield" and an oscillating motion is started by the plasma electrons. Experiments have already been carried out impacting lasers or an electron beam onto a plasma and accelerating gradients have been observed which are 1000 times higher than conventional accelerators. Given the much higher initial energy of available proton beams, it is anticipated that the electric fields it creates in a plasma could accelerate electrons in the wakefield up to the teraelectron-volts scale required for future energy-frontier colliders, but in a single stage and with a length of a few km. In AWAKE Run 1, electrons were accelerated up to 2 GeV in wakefields driven by high energy proton bunches in 10 m of plasma. This observation was documented in a UK-led publication in Nature in 2018 which also received significant attention online and in the media. Given this tremendous success and demonstration of the technique, the AWAKE collaboration is now preparing for a Run 2 with data taking starting with the restart of the CERN accelerator complex in 2021 and continuing for 4 years until its next shutdown in 2024. The main goals of AWAKE Run 2 are to accelerate high-charge bunches of electrons to higher energy whilst preserving beam quality and showing this to be a scalable process. Some of the main challenges of AWAKE Run 2 are:o The injection of the witness electron bunch is crucial to having high charge capture, therefore detailed modelling is required and an excellent suite of diagnostics is needed.o Excellent diagnostics will be required to measure the final properties, e.g. energy distribution and spatial extent, of the accelerated electron bunches.o The development and verification of scalable plasma cells, i.e. plasma cells which can be used over 100s of metres or even kilometres whilst remaining uniform and showing reproducible acceleration.The ultimate goal is to then be in a position after Run 2 in which an electron beam can be provided for high energy particle physics experiments. Assuming the success of Run 2, high-charge bunches of electrons at ~50 GeV could be delivered for a fixed-target programme to e.g. search for dark photons or a possible electron-proton collider. Other possible particle physics applications of the AWAKE scheme are being investigated.The AWAKE-UK groups are proposing an ambitious 5-year programme to start at the end of the current grant, April 2020, and run to March 2025, working in all of the three keys areas mentioned above.
在过去的五十年里,加速器的能量和尺寸不断增加,使我们能够探索物理世界的基本结构。这在日内瓦欧洲核子研究中心的大型强子对撞机中达到了顶峰,这是一个 27 公里长的加速器,它发现了希格斯玻色子,并且正在寻找超对称等新现象。使用当前的加速器技术,未来的高能对撞机将具有相似的长度甚至更长。作为替代方案,我们正在寻求一种新技术,该技术可将长度缩短约十分之一,因此预计可大幅降低成本。此处介绍的先进质子驱动等离子体尾场实验 (AWAKE)使用高能质子束(例如欧洲核子研究中心的质子束)进入等离子体。等离子体中的自由带负电的电子被质子击出其位置,但随后被带正电的离子吸引回来,形成高梯度电“尾场”,并且等离子体开始振荡运动电子。已经进行了将激光或电子束撞击等离子体的实验,并观察到加速梯度比传统加速器高 1000 倍。鉴于可用质子束的初始能量要高得多,预计它在等离子体中产生的电场可以将尾场中的电子加速到未来能源前沿对撞机所需的太电子伏级,但在单级和长度为几公里。在 AWAKE Run 1 中,电子在 10 m 等离子体中由高能质子束驱动的尾场中加速至 2 GeV。这一观察结果记录在英国主导的 2018 年《自然》杂志上,该出版物也受到了网络和媒体的广泛关注。鉴于该技术取得的巨大成功和演示,AWAKE 合作现在正在为 Run 2 做准备,从 2021 年 CERN 加速器综合体重启开始收集数据,持续 4 年,直到 2024 年下次关闭。 AWAKE Run 2 旨在将高电荷电子束加速至更高能量,同时保持光束质量,并表明这是一个可扩展的过程。 AWAKE Run 2 的一些主要挑战是: o 见证电子束的注入对于高电荷捕获至关重要,因此需要详细的建模,并且需要一套出色的诊断。 o 需要出色的诊断来测量最终属性,例如加速电子束的能量分布和空间范围。o 可扩展等离子体电池的开发和验证,即等离子体电池可以在数百米甚至数千米的范围内使用,同时保持均匀并显示可再现的加速度。最终目标是在运行2之后处于可以为高能粒子物理实验提供电子束的位置。假设运行 2 成功,大约 50 GeV 的高电荷电子束可以为固定目标程序提供,例如:寻找暗光子或可能的电子-质子对撞机。 AWAKE 计划的其他可能的粒子物理应用正在研究中。AWAKE-UK 小组正在提议一项雄心勃勃的 5 年计划,该计划从当前拨款结束时(2020 年 4 月)开始,一直运行到 2025 年 3 月,在所有领域开展工作上述三个关键领域。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement and application of electron stripping of ultrarelativistic 208 Pb 81 +
超相对论208 Pb 81 电子剥离的测量及应用
- DOI:10.1016/j.nima.2020.164902
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Cooke D
- 通讯作者:Cooke D
Proton Bunch Self-Modulation in Plasma with Density Gradient.
具有密度梯度的等离子体中的质子束自调制。
- DOI:10.1103/physrevlett.125.264801
- 发表时间:2020
- 期刊:
- 影响因子:8.6
- 作者:Braunmüller F
- 通讯作者:Braunmüller F
Experimental study of wakefields driven by a self-modulating proton bunch in plasma
等离子体中自调节质子束驱动尾场的实验研究
- DOI:10.1103/physrevaccelbeams.23.081302
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Turner M
- 通讯作者:Turner M
Correction to 'Proton-driven plasma wakefield acceleration in AWAKE'.
对“AWAKE 中质子驱动的等离子体尾场加速”的更正。
- DOI:10.1098/rsta.2019.0539
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gschwendtner E
- 通讯作者:Gschwendtner E
The AWAKE Run 2 Programme and Beyond
- DOI:10.3390/sym14081680
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:E. Gschwendtner;K. Lotov;P. Muggli;M. Wing;R. Agnello;C. C. Ahdida-C.;M. C. A. Goncalves;Y. Andrèbe;O. Apsimon;R. Apsimon;J. Arnesano;Anna-Maria Bachmann;D. Barrientos;F. Batsch;V. Bencini;M. Bergamaschi;P. Blanchard;P. Burrows;B. Buttenschon;A. Caldwell;J. Chappell;E. Chevallay;M. Chung;D. Cooke;H. Damerau;C. Davut;G. Demeter;A. Dexter;S. Doebert;F. A. Elverson;J. Farmer;A. Fasoli;V. Fedosseev;R. Fonseca;I. Furno;S. Gessner;A. Gorn;Eduardo Granados;M. Granetzny;T. Graubner;O. Grulke;E. Guran;V. Hafych;A. Hartin;J. Henderson;M. Huther;M. Kedves;F. Keeble;V. Khudiakov;Seong-Yeol Kim;F. Kraus;Michel Krupa;T. Lefevre;L. Liang;Shengli Liu;N. Lopes;M. M. Calderón-M.;S. Mazzoni;David Godoy;J. Moody;K. Moon;Pablo Israel Morales Guzm'an;M. Moreira;T. Nechaeva;E. Nowak;C. Pakuza;H. Panuganti;A. Pardons;K. Pepitone;A. Perera;J. Půček;A. Pukhov;R. Ramjiawan;S. Rey;A. Scaachi;O. Schmitz;E. Senes;F. Silva;L. Silva;C. Stollberg;Alban Sublet;C. Swain;A. Topaloudis;N. Torrado;P. Tuev;M. Turner;F. Velotti;L. Verra;V. Verzilov;J. Vieira;H. Vincke;M. Weidl;C. Welsch;M. Wendt;P. Wiwattananon;J. Wolfenden;B. Woolley;S. Wyler;G. Xia;V. Yarygova;M. Zepp;G. Z. D. Porta
- 通讯作者:E. Gschwendtner;K. Lotov;P. Muggli;M. Wing;R. Agnello;C. C. Ahdida-C.;M. C. A. Goncalves;Y. Andrèbe;O. Apsimon;R. Apsimon;J. Arnesano;Anna-Maria Bachmann;D. Barrientos;F. Batsch;V. Bencini;M. Bergamaschi;P. Blanchard;P. Burrows;B. Buttenschon;A. Caldwell;J. Chappell;E. Chevallay;M. Chung;D. Cooke;H. Damerau;C. Davut;G. Demeter;A. Dexter;S. Doebert;F. A. Elverson;J. Farmer;A. Fasoli;V. Fedosseev;R. Fonseca;I. Furno;S. Gessner;A. Gorn;Eduardo Granados;M. Granetzny;T. Graubner;O. Grulke;E. Guran;V. Hafych;A. Hartin;J. Henderson;M. Huther;M. Kedves;F. Keeble;V. Khudiakov;Seong-Yeol Kim;F. Kraus;Michel Krupa;T. Lefevre;L. Liang;Shengli Liu;N. Lopes;M. M. Calderón-M.;S. Mazzoni;David Godoy;J. Moody;K. Moon;Pablo Israel Morales Guzm'an;M. Moreira;T. Nechaeva;E. Nowak;C. Pakuza;H. Panuganti;A. Pardons;K. Pepitone;A. Perera;J. Půček;A. Pukhov;R. Ramjiawan;S. Rey;A. Scaachi;O. Schmitz;E. Senes;F. Silva;L. Silva;C. Stollberg;Alban Sublet;C. Swain;A. Topaloudis;N. Torrado;P. Tuev;M. Turner;F. Velotti;L. Verra;V. Verzilov;J. Vieira;H. Vincke;M. Weidl;C. Welsch;M. Wendt;P. Wiwattananon;J. Wolfenden;B. Woolley;S. Wyler;G. Xia;V. Yarygova;M. Zepp;G. Z. D. Porta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Wing其他文献
Matthew Wing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Wing', 18)}}的其他基金
Production of high quality electron bunches in AWAKE Run 2
在 AWAKE Run 2 中生产高质量电子束
- 批准号:
ST/X005674/1 - 财政年份:2022
- 资助金额:
$ 36.48万 - 项目类别:
Research Grant
AWAKE: a proton-driven plasma wakefield acceleration experiment at CERN
AWAKE:欧洲核子研究中心的质子驱动等离子体尾场加速实验
- 批准号:
ST/R002339/1 - 财政年份:2017
- 资助金额:
$ 36.48万 - 项目类别:
Research Grant
AWAKE: a proton-driven plasma wakefield acceleration experiment at CERN
AWAKE:欧洲核子研究中心的质子驱动等离子体尾场加速实验
- 批准号:
ST/N001613/1 - 财政年份:2016
- 资助金额:
$ 36.48万 - 项目类别:
Research Grant
AWAKE: a proton-driven plasma wakefield acceleration experiment at CERN
AWAKE:欧洲核子研究中心的质子驱动等离子体尾场加速实验
- 批准号:
ST/P001777/1 - 财政年份:2016
- 资助金额:
$ 36.48万 - 项目类别:
Research Grant
Data acquisition for COMET Phase I Experiment
COMET 第一期实验数据采集
- 批准号:
ST/M001385/1 - 财政年份:2013
- 资助金额:
$ 36.48万 - 项目类别:
Research Grant
Proton-driven plasma wakefield acceleration---a new route to a TeV e+e- collider
质子驱动等离子体尾场加速——TeV e电子对撞机的新途径
- 批准号:
ST/K002244/1 - 财政年份:2012
- 资助金额:
$ 36.48万 - 项目类别:
Research Grant
Proton-driven plasma wakefield acceleration---a new route to a TeV e+e- collider
质子驱动等离子体尾场加速——TeV e电子对撞机的新途径
- 批准号:
AWAKE - 财政年份:2010
- 资助金额:
$ 36.48万 - 项目类别:
Intramural
相似国自然基金
电子化老年HIV感染者/AIDS患者PRO量表的研制及其在生命质量反应转移中的应用
- 批准号:72174177
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
高质量低维拓扑电子器件制备和输运性质研究
- 批准号:12174439
- 批准年份:2021
- 资助金额:62 万元
- 项目类别:面上项目
运用质量选择红外光谱法探究气相含硫氨基酸团簇的双中心三电子结构
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
高气压下微波等离子体化学气相沉积生长电子级高质量单晶金刚石
- 批准号:
- 批准年份:2019
- 资助金额:15 万元
- 项目类别:国际(地区)合作与交流项目
质量不平等强关联电子系统中非平衡量子效应的研究
- 批准号:11904143
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Investigating the Mechanism of Optic Nerve disorders associated with Down Syndrome
研究与唐氏综合症相关的视神经疾病的机制
- 批准号:
10658120 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Investigating mitochondrial dysfunction in neurodegeneration using A Nanoparticle-based Synthetic Mitochondrial DNA (mtDNA) Transcription Regulator
使用基于纳米颗粒的合成线粒体 DNA (mtDNA) 转录调节器研究神经退行性变中的线粒体功能障碍
- 批准号:
10679826 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Extracellular redox biology links to metabolic and mitochondrial dysfunction in pulmonary hypertension
细胞外氧化还原生物学与肺动脉高压的代谢和线粒体功能障碍有关
- 批准号:
10750457 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别: