A journey from the solar nebula to planetary bodies: cycling of heat, water and organics

从太阳星云到行星体的旅程:热、水和有机物的循环

基本信息

  • 批准号:
    ST/N000846/1
  • 负责人:
  • 金额:
    $ 48.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

In this research programme, planetary scientists and engineers from the University of Glasgow and the Scottish Universities Environmental Research Centre have joined forces to answer important questions concerning the origin and evolution of asteroids, the Moon and Mars. The emphasis of our work is on understanding the thermal histories of these planetary bodies over a range of time and distance scales, and how water and carbon-rich molecules have been transported within and between them.One part of the consortium will explore the formation and subsequent history of asteroids. Our focus is on primitive asteroids, which have changed little since they formed 4500 million years ago within a cloud of dust and gas called the solar nebula. These bodies are far smaller than the planets, but are scientifically very important because they contain water and carbon-rich molecules, both of which are essential to life. We want to understand the full range of materials that went to form these asteroids, and where in the solar nebular they came from. Although they are very primitive, most of these asteroids have been changed by chemical reactions that were driven by liquid water, itself generated by the melting of ice. We will ask whether the heat needed to melt this ice was produced by the decay of radioactive elements, or by collisions with other asteroids. The answer to this question has important implications for understanding how asteroids of all types evolved, and what we may find when samples of primitive asteroids are collected and returned to Earth. Pieces of primitive asteroids also fall to Earth as meteorites, and bring with them some of their primordial water, along with molecules that are rich in carbon. Many scientists think that much of the water on Earth today was obtained from outer space, and consortium researchers would like to test this idea. In order to understand the nature and volume of water and carbon that would have been delivered by meteorites, we first need to develop reliable ways to distinguish extraterrestrial carbon and water from the carbon and water that has been added to the meteorite after it fell to Earth. We plan to do this by identifying 'fingerprints' of terrestrial water and carbon so that they can be subtracted from the extraterrestrial components. One of the main ways in which this carbon was delivered to Earth during its earliest times was by large meteorites colliding with the surface of our planet at high velocities. Thus we also wish to understand the extent to which the extraterrestrial carbon was preserved or transformed during these energetic impact events.The formation and early thermal history of the moon is another area of interest for the consortium. In particular, we will ask when its rocky crust was formed, and use its impact history to determine meteorite flux throughout the inner solar system. To answer these questions we will analyse meteorites and samples collected by the Apollo and Luna missions to determine the amounts of chemical elements including argon and lead that these rocks contain. Information on the temperature of surface and sub-surface regions of Mars can help us to understand processes including the interaction of the planet's crust with liquid water. In order to be able to explore these processes using information on the thermal properties of martian rocks that will soon to be obtained by the NASA InSight lander, we will undertake a laboratory study of the effects of heating and cooling on a simulated martian surface. Hot water reaching the surface of Mars from its interior may once have created environments that were suitable for life to develop, and minerals formed by this water could have preserved the traces of any microorganisms that were present. We will assess the possibility that such springs could have preserved traces of past martian life by examining a unique high-altitude hot spring system on Earth.
在该研究计划中,格拉斯哥大学和苏格兰大学环境研究中心的行星科学家和工程师联合起来,回答有关小行星,月球和火星的起源和演变的重要问题。我们工作的重点是了解这些行星体的热历史在一定范围内和距离尺度上,以及如何在它们之间和之间运输富含水和富含碳的分子。财团的一个部分将探索小行星的地层和后续史。我们的重点是原始的小行星,自从它们在4.5亿年前形成的灰尘和气体云中,它们几乎没有改变,称为太阳星云。这些物体远小于行星,但在科学上非常重要,因为它们含有水和富含碳的分子,这对生命都是必不可少的。我们想了解构成这些小行星的全部材料,以及它们来自的太阳星云中的位置。尽管它们非常原始,但这些小行星中的大多数已通过液态水驱动的化学反应改变,这本身是由冰的融化产生的。我们将询问融化这种冰所需的热量是由于放射性元素的衰减而产生的,还是与其他小行星发生碰撞。这个问题的答案对于理解所有类型的小行星的发展以及当收集原始小行星样本并返回地球时可能会发现什么。原始的小行星也像陨石一样落在地球上,并带上一些原始水,以及富含碳的分子。许多科学家认为,当今地球上的大部分水是从外太空获得的,财团研究人员希望测试这一想法。为了理解陨石本来可以输送的水和碳的性质和量,我们首先需要开发可靠的方法,以区分外星碳和水与量后添加到陨石后的碳和水。我们计划通过识别陆生水和碳的“指纹”来做到这一点,以便可以从外星成分中减去它们。该碳最早将这种碳输送到地球的主要方式之一是大型陨石以高速与我们星球的表面相撞。因此,我们还希望了解在这些充满活力的影响事件中保存或转化的外星碳的程度。特别是,我们将询问何时形成岩石地壳,并使用其影响历史来确定整个太阳系内的陨石通量。为了回答这些问题,我们将分析Apollo和Luna任务收集的陨石和样品,以确定这些岩石所包含的化学元素的数量。有关火星表面温度和地下区域温度的信息可以帮助我们了解过程,包括地壳与液态水的相互作用。为了能够使用有关火星岩石的热特性的信息来探索这些过程,而火星岩石将很快由NASA Insight Lander获得,我们将对加热和冷却对模拟火星表面的影响进行实验室研究。从其内部到达火星表面的热水可能曾经创造出适合生命的环境,而这种水由这种水形成的矿物可能保留了存在的任何微生物的痕迹。我们将通过检查地球上独特的高空温泉系统来评估这种弹簧可以保留过去火星生命的痕迹的可能性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraints on the Emplacement of Martian Nakhlite Igneous Rocks and Their Source Volcano From Advanced Micro-Petrofabric Analysis
先进微岩组分析对火星 Nakhlite 火成岩及其源火山就位的限制
  • DOI:
    10.1029/2021je007080
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Griffin S
  • 通讯作者:
    Griffin S
Can the Magmatic Conditions of the Martian Nakhlites be Discerned via Investigation of Clinopyroxene and Olivine Intracrystalline Misorientations?
  • DOI:
    10.1029/2021je007082
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Griffin;L. Daly;S. Piazolo;L. Forman;B. E. Cohen;Martin R Lee;P. Trimby;R. Baumgartner;G. Benedix;B. Hoefnagels
  • 通讯作者:
    S. Griffin;L. Daly;S. Piazolo;L. Forman;B. E. Cohen;Martin R Lee;P. Trimby;R. Baumgartner;G. Benedix;B. Hoefnagels
Did the R-chondrite Parent Body Experience Onion-shell Cooling?
R球粒陨石母体是否经历过洋葱壳冷却?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cohen, B.E.
  • 通讯作者:
    Cohen, B.E.
Evidence for subsolidus quartz-coesite transformation in impact ejecta from the Australasian tektite strewn field
  • DOI:
    10.1016/j.gca.2019.08.014
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Campanale, Fabrizio;Mugnaioli, Enrico;Glass, Billy P.
  • 通讯作者:
    Glass, Billy P.
A new high-precision 40 Ar/ 39 Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary
Rochechouart 撞击构造的新高精度 40 Ar/ 39 Ar 年龄:比三叠纪-侏罗纪边界至少早 5 Ma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Robert Lee其他文献

Martin Robert Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Robert Lee', 18)}}的其他基金

The cosmic carbon observatory
宇宙碳观测站
  • 批准号:
    ST/W001128/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
UK leadership in extraterrestrial sample return
英国在外星样本返回方面处于领先地位
  • 批准号:
    ST/T002328/1
  • 财政年份:
    2019
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Reconstructing thermal and fluid alteration histories of planetary materials
重建行星材料的热和流体变化历史
  • 批准号:
    ST/K000942/1
  • 财政年份:
    2013
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Flow the water: Insights into the Martian hydrosphere from the nakhlites
流动的水:从 nakhlites 洞察火星水圈
  • 批准号:
    ST/H002960/1
  • 财政年份:
    2011
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Doctoral Training Grant (DTG) to provide funding for 1 PhD studentship.
博士培训补助金 (DTG) 为 1 名博士生提供资助。
  • 批准号:
    NE/H526919/1
  • 财政年份:
    2009
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Training Grant
Spatial and temporal scales of aqueous alteration in icy planetesimals
冰冷星子中水相变化的时空尺度
  • 批准号:
    ST/G001693/1
  • 财政年份:
    2009
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant

相似国自然基金

CO型碳质球粒陨石富钙铝包体的26Al-26Mg年龄以及Ca-Ti同位素异常对早期太阳系星云环境的制约
  • 批准号:
    42373039
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
顽辉石球粒陨石中的太阳系外颗粒
  • 批准号:
    41673069
  • 批准年份:
    2016
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
陨石中氯-36的分布:太阳星云中灭绝核素成因的实验证据
  • 批准号:
    41173075
  • 批准年份:
    2011
  • 资助金额:
    99.0 万元
  • 项目类别:
    面上项目
太阳系起源理论中的若干问题
  • 批准号:
    11073009
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目
太阳星云的结构和行星形成理论中的若干问题
  • 批准号:
    10873006
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Chemical Evolution of Chondrite Components: Implications for Mixing in the Solar Nebula
球粒陨石成分的化学演化:对太阳星云混合的影响
  • 批准号:
    2442966
  • 财政年份:
    2020
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Studentship
Timing of dissipation of the solar nebula gas and accretion ages of cometary dustof comets based on the 26Al-26Mg chronometry
基于26Al-26Mg测时法的太阳星云气体消散时间和彗星尘埃吸积年龄
  • 批准号:
    18H01263
  • 财政年份:
    2018
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Condensation processes of volatile elements in the primordial solar nebula revealed by multi-isotope chronology
多同位素年代学揭示原始太阳星云中挥发性元素的凝聚过程
  • 批准号:
    17K14423
  • 财政年份:
    2017
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A journey from the solar nebula to planetary bodies: cycling of heat, water and organics
从太阳星云到行星体的旅程:热、水和有机物的循环
  • 批准号:
    ST/N000862/1
  • 财政年份:
    2016
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Study of large scale circulation in early solar nebula using new method of CT analysis of meteorites for the analysis of Hayabusa2 returned samples
使用陨石 CT 分析新方法研究早期太阳星云大尺度环流,用于分析隼鸟 2 号返回的样本
  • 批准号:
    15H03755
  • 财政年份:
    2015
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了