A journey from the solar nebula to planetary bodies: cycling of heat, water and organics
从太阳星云到行星体的旅程:热、水和有机物的循环
基本信息
- 批准号:ST/N000846/1
- 负责人:
- 金额:$ 48.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research programme, planetary scientists and engineers from the University of Glasgow and the Scottish Universities Environmental Research Centre have joined forces to answer important questions concerning the origin and evolution of asteroids, the Moon and Mars. The emphasis of our work is on understanding the thermal histories of these planetary bodies over a range of time and distance scales, and how water and carbon-rich molecules have been transported within and between them.One part of the consortium will explore the formation and subsequent history of asteroids. Our focus is on primitive asteroids, which have changed little since they formed 4500 million years ago within a cloud of dust and gas called the solar nebula. These bodies are far smaller than the planets, but are scientifically very important because they contain water and carbon-rich molecules, both of which are essential to life. We want to understand the full range of materials that went to form these asteroids, and where in the solar nebular they came from. Although they are very primitive, most of these asteroids have been changed by chemical reactions that were driven by liquid water, itself generated by the melting of ice. We will ask whether the heat needed to melt this ice was produced by the decay of radioactive elements, or by collisions with other asteroids. The answer to this question has important implications for understanding how asteroids of all types evolved, and what we may find when samples of primitive asteroids are collected and returned to Earth. Pieces of primitive asteroids also fall to Earth as meteorites, and bring with them some of their primordial water, along with molecules that are rich in carbon. Many scientists think that much of the water on Earth today was obtained from outer space, and consortium researchers would like to test this idea. In order to understand the nature and volume of water and carbon that would have been delivered by meteorites, we first need to develop reliable ways to distinguish extraterrestrial carbon and water from the carbon and water that has been added to the meteorite after it fell to Earth. We plan to do this by identifying 'fingerprints' of terrestrial water and carbon so that they can be subtracted from the extraterrestrial components. One of the main ways in which this carbon was delivered to Earth during its earliest times was by large meteorites colliding with the surface of our planet at high velocities. Thus we also wish to understand the extent to which the extraterrestrial carbon was preserved or transformed during these energetic impact events.The formation and early thermal history of the moon is another area of interest for the consortium. In particular, we will ask when its rocky crust was formed, and use its impact history to determine meteorite flux throughout the inner solar system. To answer these questions we will analyse meteorites and samples collected by the Apollo and Luna missions to determine the amounts of chemical elements including argon and lead that these rocks contain. Information on the temperature of surface and sub-surface regions of Mars can help us to understand processes including the interaction of the planet's crust with liquid water. In order to be able to explore these processes using information on the thermal properties of martian rocks that will soon to be obtained by the NASA InSight lander, we will undertake a laboratory study of the effects of heating and cooling on a simulated martian surface. Hot water reaching the surface of Mars from its interior may once have created environments that were suitable for life to develop, and minerals formed by this water could have preserved the traces of any microorganisms that were present. We will assess the possibility that such springs could have preserved traces of past martian life by examining a unique high-altitude hot spring system on Earth.
在这项研究计划中,来自格拉斯哥大学和苏格兰大学环境研究中心的行星科学家和工程师联手回答有关小行星、月球和火星的起源和演化的重要问题。我们工作的重点是了解这些行星体在一定时间和距离尺度上的热历史,以及水和富含碳的分子如何在它们内部和之间传输。该联盟的一部分将探索这些行星体的形成和分布。小行星的后续历史。我们的重点是原始小行星,自从 45 亿年前在称为太阳星云的尘埃和气体云中形成以来,它们几乎没有变化。这些天体比行星小得多,但在科学上非常重要,因为它们含有水和富含碳的分子,这两者都是生命所必需的。我们想要了解形成这些小行星的全部材料,以及它们来自太阳星云的何处。尽管它们非常原始,但大多数小行星已经被液态水驱动的化学反应所改变,而液态水本身是由冰融化产生的。我们将询问融化这些冰所需的热量是否是由放射性元素的衰变产生的,或者是由与其他小行星的碰撞产生的。这个问题的答案对于理解所有类型的小行星如何演化,以及当收集原始小行星样本并将其带回地球时我们可能会发现什么具有重要意义。原始小行星的碎片也会以陨石的形式落到地球上,并带来一些原始水以及富含碳的分子。许多科学家认为,当今地球上的大部分水都是从外太空获得的,联盟研究人员希望验证这一想法。为了了解陨石所带来的水和碳的性质和数量,我们首先需要开发可靠的方法来区分地外碳和水与陨石坠落到地球后添加到其中的碳和水。我们计划通过识别陆地水和碳的“指纹”来做到这一点,以便可以从地外成分中减去它们。在最早的时期,这些碳被输送到地球的主要方式之一是大型陨石与地球表面高速碰撞。因此,我们还希望了解在这些高能撞击事件中地外碳的保存或转变程度。月球的形成和早期热历史是该联盟感兴趣的另一个领域。特别是,我们将询问其岩石地壳何时形成,并利用其撞击历史来确定整个内太阳系的陨石通量。为了回答这些问题,我们将分析阿波罗和月球任务收集的陨石和样本,以确定这些岩石中含有的化学元素(包括氩和铅)的含量。有关火星表面和次表面区域温度的信息可以帮助我们了解包括火星地壳与液态水相互作用在内的过程。为了能够利用美国宇航局洞察号着陆器即将获得的火星岩石热特性信息来探索这些过程,我们将进行一项实验室研究,研究加热和冷却对模拟火星表面的影响。从火星内部到达火星表面的热水可能曾经创造了适合生命发育的环境,而这种水形成的矿物质可能保留了任何存在的微生物的痕迹。我们将通过检查地球上独特的高海拔温泉系统来评估此类温泉保留过去火星生命痕迹的可能性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraints on the Emplacement of Martian Nakhlite Igneous Rocks and Their Source Volcano From Advanced Micro-Petrofabric Analysis
先进微岩组分析对火星 Nakhlite 火成岩及其源火山就位的限制
- DOI:10.1029/2021je007080
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Griffin S
- 通讯作者:Griffin S
Can the Magmatic Conditions of the Martian Nakhlites be Discerned via Investigation of Clinopyroxene and Olivine Intracrystalline Misorientations?
- DOI:10.1029/2021je007082
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:S. Griffin;L. Daly;S. Piazolo;L. Forman;B. E. Cohen;Martin R Lee;P. Trimby;R. Baumgartner;G. Benedix;B. Hoefnagels
- 通讯作者:S. Griffin;L. Daly;S. Piazolo;L. Forman;B. E. Cohen;Martin R Lee;P. Trimby;R. Baumgartner;G. Benedix;B. Hoefnagels
Did the R-chondrite Parent Body Experience Onion-shell Cooling?
R球粒陨石母体是否经历过洋葱壳冷却?
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Cohen, B.E.
- 通讯作者:Cohen, B.E.
Evidence for subsolidus quartz-coesite transformation in impact ejecta from the Australasian tektite strewn field
- DOI:10.1016/j.gca.2019.08.014
- 发表时间:2019-11-01
- 期刊:
- 影响因子:5
- 作者:Campanale, Fabrizio;Mugnaioli, Enrico;Glass, Billy P.
- 通讯作者:Glass, Billy P.
A new high-precision 40 Ar/ 39 Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary
Rochechouart 撞击构造的新高精度 40 Ar/ 39 Ar 年龄:比三叠纪-侏罗纪边界至少早 5 Ma
- DOI:10.1111/maps.12880
- 发表时间:2017
- 期刊:
- 影响因子:2.2
- 作者:Cohen B
- 通讯作者:Cohen B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Robert Lee其他文献
Martin Robert Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Robert Lee', 18)}}的其他基金
UK leadership in extraterrestrial sample return
英国在外星样本返回方面处于领先地位
- 批准号:
ST/T002328/1 - 财政年份:2019
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
Reconstructing thermal and fluid alteration histories of planetary materials
重建行星材料的热和流体变化历史
- 批准号:
ST/K000942/1 - 财政年份:2013
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
Flow the water: Insights into the Martian hydrosphere from the nakhlites
流动的水:从 nakhlites 洞察火星水圈
- 批准号:
ST/H002960/1 - 财政年份:2011
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
Doctoral Training Grant (DTG) to provide funding for 1 PhD studentship.
博士培训补助金 (DTG) 为 1 名博士生提供资助。
- 批准号:
NE/H526919/1 - 财政年份:2009
- 资助金额:
$ 48.63万 - 项目类别:
Training Grant
Spatial and temporal scales of aqueous alteration in icy planetesimals
冰冷星子中水相变化的时空尺度
- 批准号:
ST/G001693/1 - 财政年份:2009
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
相似国自然基金
CO型碳质球粒陨石富钙铝包体的26Al-26Mg年龄以及Ca-Ti同位素异常对早期太阳系星云环境的制约
- 批准号:42373039
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
顽辉石球粒陨石中的太阳系外颗粒
- 批准号:41673069
- 批准年份:2016
- 资助金额:73.0 万元
- 项目类别:面上项目
陨石中氯-36的分布:太阳星云中灭绝核素成因的实验证据
- 批准号:41173075
- 批准年份:2011
- 资助金额:99.0 万元
- 项目类别:面上项目
太阳系起源理论中的若干问题
- 批准号:11073009
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
陨石中的太阳系外物质:恒星的核过程与太阳星云的初始状态
- 批准号:40830421
- 批准年份:2008
- 资助金额:170.0 万元
- 项目类别:重点项目
相似海外基金
The Chemical Evolution of Chondrite Components: Implications for Mixing in the Solar Nebula
球粒陨石成分的化学演化:对太阳星云混合的影响
- 批准号:
2442966 - 财政年份:2020
- 资助金额:
$ 48.63万 - 项目类别:
Studentship
Timing of dissipation of the solar nebula gas and accretion ages of cometary dustof comets based on the 26Al-26Mg chronometry
基于26Al-26Mg测时法的太阳星云气体消散时间和彗星尘埃吸积年龄
- 批准号:
18H01263 - 财政年份:2018
- 资助金额:
$ 48.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Condensation processes of volatile elements in the primordial solar nebula revealed by multi-isotope chronology
多同位素年代学揭示原始太阳星云中挥发性元素的凝聚过程
- 批准号:
17K14423 - 财政年份:2017
- 资助金额:
$ 48.63万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A journey from the solar nebula to planetary bodies: cycling of heat, water and organics
从太阳星云到行星体的旅程:热、水和有机物的循环
- 批准号:
ST/N000862/1 - 财政年份:2016
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
Study of large scale circulation in early solar nebula using new method of CT analysis of meteorites for the analysis of Hayabusa2 returned samples
使用陨石 CT 分析新方法研究早期太阳星云大尺度环流,用于分析隼鸟 2 号返回的样本
- 批准号:
15H03755 - 财政年份:2015
- 资助金额:
$ 48.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)