Pushing the Boundaries: Solar Physics in an Era of High Spatial and Temporal Resolution
突破界限:高时空分辨率时代的太阳物理学
基本信息
- 批准号:ST/G004986/1
- 负责人:
- 金额:$ 28.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Sun is the most important astronomical object for humankind, with solar activity driving 'space weather' and having a profound effect on the environment and communications. Here on Earth, we can see directly the effects of the Sun's radiation through fascinating sights such as the aurora. However, currently the power behind the Sun's activity cannot be predicted, or indeed fully explained. Most would expect that as you move away from a fierce heat source, such as a naked flame, the temperature will drop significantly. However, one of the greatest paradoxes plaguing solar-system scientists is the fact that the outer atmosphere of the Sun is much hotter than its surface! An increase in temperature from around 6000 degrees to well over one million degrees as you travel away from the surface belies common sense and has remained at the forefront of solar-system research for over 50 years. Many theories have been proposed in an attempt to understand the inner workings of this complex dynamical system, producing two distinct classes of theory: flare events and wave heating. The former suggests that rapidly occurring, small explosive events in the atmosphere of the Sun may cause the observed steep temperature gradient. The latter relies on the generation of magneto-hydrodynamic (MHD) waves which propagate upwards from the surface of the Sun and dissipate in the corona. A good analogy is to imagine ocean waves travelling across the vast seas before finally releasing their energy when they splash up against a rocky coastline. Theory suggests that MHD waves generated near the surface of the Sun through the continual churning of plasma may propagate upwards if the conditions are correct, ultimately dissipating their energy and heating the outer solar atmosphere. As an STFC Postdoctoral Fellow at QUB, I will utilize modern ground- and space-based telescopes containing a wide assortment of high resolution instruments. The observational component of my research programme will focus on the distinction of individual MHD waves, which will allow key characteristics to be evaluated. These include the mode of oscillation (longitudinal, transverse, etc.), the velocity, the direction and of course, the energy. I will compare these values to those specific for atmospheric heating of the Sun, thus allowing the current theoretical heating models described above to be validated or refuted. Computer simulations will also be implemented to validate observational methodologies and accuracy, culminating in much refined models of the solar atmosphere. With the rapid advancements made in the field of solar physics over the last number of years (better telescopes, detectors and computers), the ability to finally resolve the atmospheric heating paradox is now a reality and that is what I will strive to do as an STFC Postdoctoral Fellow.
太阳是人类最重要的天体,太阳活动驱动“太空天气”,并对环境和通信产生深远影响。在地球上,我们可以通过极光等迷人的景象直接看到太阳辐射的影响。然而,目前太阳活动背后的力量还无法预测,也无法完全解释。大多数人预计,当您远离猛烈的热源(例如明火)时,温度会显着下降。然而,困扰太阳系科学家的最大悖论之一是太阳的外层大气比其表面热得多!当你离开地表时,温度会从大约 6000 度上升到远超过 100 万度,这违背了常识,并且在 50 多年来一直处于太阳系研究的前沿。为了理解这个复杂动力系统的内部运作原理,人们提出了许多理论,产生了两类不同的理论:耀斑事件和波加热。前者表明,太阳大气中快速发生的小型爆炸事件可能导致观察到的陡峭温度梯度。后者依赖于磁流体动力(MHD)波的产生,该波从太阳表面向上传播并在日冕中消散。一个很好的类比是想象海浪穿过浩瀚的海洋,最后在溅到岩石海岸线上时释放能量。理论表明,如果条件合适,通过等离子体的持续搅动在太阳表面附近产生的磁流体密度波可能会向上传播,最终耗散其能量并加热太阳外层大气。作为 QUB 的 STFC 博士后研究员,我将利用包含各种高分辨率仪器的现代地基和空基望远镜。我的研究计划的观察部分将重点关注单个 MHD 波的区别,这将允许评估关键特征。这些包括振荡模式(纵向、横向等)、速度、方向,当然还有能量。我将把这些值与太阳大气加热的特定值进行比较,从而使上述当前的理论加热模型得到验证或反驳。还将实施计算机模拟来验证观测方法和准确性,最终形成更加精细的太阳大气模型。随着过去几年太阳物理学领域的快速进步(更好的望远镜、探测器和计算机),最终解决大气加热悖论的能力现已成为现实,这就是我作为一名科学家将努力做的事情。 STFC博士后研究员。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
THE SEARCH FOR SUPER-SATURATION IN CHROMOSPHERIC EMISSION
寻找色球发射的超饱和度
- DOI:http://dx.10.1088/0004-637x/738/2/164
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Christian D
- 通讯作者:Christian D
THE AREA DISTRIBUTION OF SOLAR MAGNETIC BRIGHT POINTS
太阳磁亮点面积分布
- DOI:10.1088/2041-8205/722/2/l188
- 发表时间:2010-09-13
- 期刊:
- 影响因子:0
- 作者:P. J. Crockett;M. Mathioudakis;D. Jess;S. Shelyag;F. Keenan;Damian J. Christian
- 通讯作者:Damian J. Christian
MICROFLARE ACTIVITY DRIVEN BY FORCED MAGNETIC RECONNECTION
强制磁重联驱动的微耀斑活动
- DOI:10.1088/2041-8205/712/1/l111
- 发表时间:2010-02-19
- 期刊:
- 影响因子:0
- 作者:D. Jess;M. Mathioudakis;P. Browning;P. J. Crockett;F. Keenan
- 通讯作者:F. Keenan
Automated detection and tracking of solar magnetic bright points
- DOI:10.1111/j.1365-2966.2009.15083.x
- 发表时间:2009-05-19
- 期刊:
- 影响因子:4.8
- 作者:P. J. Crockett;D. Jess;M. Mathioudakis;F. Keenan
- 通讯作者:F. Keenan
THE SOURCE OF 3 MINUTE MAGNETOACOUSTIC OSCILLATIONS IN CORONAL FANS
日冕扇中 3 分钟磁声振荡的来源
- DOI:http://dx.10.1088/0004-637x/757/2/160
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Jess D
- 通讯作者:Jess D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jess其他文献
David Jess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jess', 18)}}的其他基金
PATT Travel Grant for observational astrophysics at Queen's University Belfast (2023 - 2025)
PATT 贝尔法斯特女王大学观测天体物理学旅行补助金(2023 - 2025)
- 批准号:
ST/X005526/1 - 财政年份:2023
- 资助金额:
$ 28.29万 - 项目类别:
Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2020 - 2022
PATT 昆士兰大学观测天体物理学旅行补助金:2020 - 2022
- 批准号:
ST/V00199X/1 - 财政年份:2021
- 资助金额:
$ 28.29万 - 项目类别:
Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2018 - 2020
PATT 昆士兰大学观测天体物理学旅行补助金:2018 - 2020
- 批准号:
ST/S001298/1 - 财政年份:2018
- 资助金额:
$ 28.29万 - 项目类别:
Research Grant
Nanoflares: Explosive Heating of our Sun's Atmosphere
纳米耀斑:太阳大气的爆炸性加热
- 批准号:
ST/L002744/1 - 财政年份:2014
- 资助金额:
$ 28.29万 - 项目类别:
Research Grant
Waves and Flows: Linking the Solar Photosphere to the Corona
波与流:将太阳光球层与日冕联系起来
- 批准号:
ST/K004220/1 - 财政年份:2013
- 资助金额:
$ 28.29万 - 项目类别:
Fellowship
相似国自然基金
“双循环”背景下第三代半导体创新网络的竞合效应:基于边界拓展和跨网联动的考察
- 批准号:72303054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向要素流动的城市群居民活动空间边界识别、机理与测度研究:以粤港澳大湾区为例
- 批准号:42371202
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
具有移动边界和干扰的无穷维系统的控制
- 批准号:62303289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
传导边界条件下逆声波散射问题的唯一性研究
- 批准号:12301542
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蛋白法尼基化修饰对水稻边界区域和腋生分生组织发育的调控机制
- 批准号:32300312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 28.29万 - 项目类别:
Discovery Projects
DISTOPIA - Distorting the Aerospace Manufacturing Boundaries: Operational Integration of Autonomy on Titanium
DISTOPIA - 扭曲航空航天制造边界:钛合金上的自主运营集成
- 批准号:
10086469 - 财政年份:2024
- 资助金额:
$ 28.29万 - 项目类别:
Collaborative R&D
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 28.29万 - 项目类别:
Standard Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
- 批准号:
2403698 - 财政年份:2024
- 资助金额:
$ 28.29万 - 项目类别:
Standard Grant