How will Emperor Penguins Respond to Changing Ice Conditions (EPIC)?

帝企鹅将如何应对不断变化的冰况(EPIC)?

基本信息

  • 批准号:
    NE/Y00115X/1
  • 负责人:
  • 金额:
    $ 59.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

In 2021, the first full inventory of emperor penguin colonies in Antarctica was generated using satellite imagery. It is therefore not surprising that their population vulnerability to changing climate is not yet well known, with colony movements only having been observed at a small number of sites. As Antarctica responds to warming climate and ocean conditions, sea ice is likely to decline, presenting a potentially significant risk to the viability of emperor penguin colonies because they live on sea ice and rely on its stability for breeding and feeding. The extent of sea ice fell by over 2 million km2 compared to average around Antarctica between 2016 and 2018, and reductions of future sea ice loss suggest that the majority of colonies may become quasi-extinct by 2100 under current greenhouse gas emission scenarios. However, both historic and future colony responses are poorly known. For example, the models which predict future behaviour are based upon breeding factors measured at a single site and behavioural factors measured at only 9 sites over a short time period of 13 years. Thus there is a significant need to improve our understanding of past colony changes and how they link to changing sea ice habitat conditions so that we can better predict future colony vulnerability under a changing climate.Although sea ice loss (and thus emperor penguin habitat) is controlled on a large scale by warming climate and oceans, an additionally overlooked process which may be increasingly disrupting sea ice conditions is the calving of icebergs which can push, or cause the fracturing of, sea ice, leaving an embayment sea ice free. In response to the loss of sea ice, emperor penguins may move to another region where sea ice conditions are more stable, or if no such area is available, they have more recently been observed to climb onto the glaciers themselves. This is a dramatic response, but without it the colony may cease to exist. Such observations of movement are again limited to a few local studies, and the impact of calving-induced sea ice breakout events upon emperor penguin colonies has never been measured. Our aim is to understand the past, present and future vulnerability of emperor penguin colonies to changing glacier and sea ice conditions. We will use existing archives of freely-available satellite imagery to map past colony movements, sea ice and glacier calving conditions at each of the 61 newly identified emperor penguin colonies in Antarctica. This will allow us to establish how historic sea ice conditions have changed at each colony and will also allow us to understand the impact of specific glacier calving events over the last 30-40 years. Our work will allow us to determine whether colony ability to move onto glacier ice or to migrate to new sea ice areas is a common reaction to sea ice loss, or whether this is a new phenomena. Using this information, we will gain better understanding of colony vulnerability to sea ice changes. In areas where colonies currently appear at risk, we will use very high-resolution commercial satellite imagery to establish whether they remain viable as a breeding colony. This understanding will be used to control and enhance numerical models of penguin population dynamics and breeding success under future scenarios of sea ice and glacier calving conditions. In particular, as air temperatures warm or as glaciers calve at a particular frequency, we will test how colonies will respond. The outcome of this work is vitally important for our understanding of the species and its survival over the next century and it expected to form the foundation for a case to establish emperor penguins as a protected species in the face of climate change.
2021 年,利用卫星图像对南极洲帝企鹅群落进行了首次全面清查。因此,毫不奇怪的是,它们的种群对气候变化的脆弱性尚不清楚,仅在少数地点观察到群体移动。随着南极洲对气候变暖和海洋条件的反应,海冰可能会减少,这对帝企鹅群落的生存构成潜在的重大风险,因为它们生活在海冰上并依赖海冰的稳定性进行繁殖和进食。 2016年至2018年间,与南极洲周围的平均海冰面积相比,海冰面积减少了超过200万平方公里,未来海冰损失的减少表明,在目前的温室气体排放情景下,到2100年,大多数群体可能会准灭绝。然而,历史和未来的群体反应却鲜为人知。例如,预测未来行为的模型基于在单个地点测量的育种因素和在 13 年的短时间内仅在 9 个地点测量的行为因素。因此,我们迫切需要提高对过去群体变化的了解,以及它们如何与不断变化的海冰栖息地条件联系起来,以便我们能够更好地预测气候变化下未来群体的脆弱性。尽管海冰消失(以及帝企鹅栖息地)是气候和海洋变暖在很大程度上控制着冰山的崩解,这可能会日益扰乱海冰条件,而冰山的崩解可能会推动或导致海冰破裂,从而使海湾海冰消失。为了应对海冰的消失,帝企鹅可能会迁移到海冰条件更稳定的另一个地区,或者如果没有这样的地区,最近人们发现它们自己爬上冰川。这是一个戏剧性的反应,但如果没有它,殖民地可能会不复存在。这种对运动的观察也仅限于一些当地研究,而且产犊引起的海冰破裂事件对帝企鹅群落的影响从未被测量过。我们的目标是了解帝企鹅群落过去、现在和未来对冰川和海冰条件变化的脆弱性。我们将利用现有的免费卫星图像档案来绘制南极洲 61 个新发现的帝企鹅栖息地过去的群落运动、海冰和冰川崩解情况。这将使我们能够确定每个殖民地的历史海冰状况如何变化,也使我们能够了解过去 30-40 年中特定冰川崩解事件的影响。我们的工作将使我们能够确定群体迁移到冰川冰上或迁移到新海冰区域的能力是否是对海冰消失的常见反应,或者这是否是一种新现象。利用这些信息,我们将更好地了解殖民地对海冰变化的脆弱性。在目前蜂群面临风险的地区,我们将使用非常高分辨率的商业卫星图像来确定它们是否仍然可以作为繁殖群。这种理解将用于控制和增强未来海冰和冰川崩解条件下企鹅种群动态和繁殖成功的数值模型。特别是,当气温变暖或冰川以特定频率崩解时,我们将测试菌落的反应。这项工作的结果对于我们了解该物种及其在下个世纪的生存至关重要,它有望为在气候变化面前将帝企鹅确立为受保护物种奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stewart Jamieson其他文献

The Pervasiveness of Deep Learning in Robotics Research Does Not Impede Scientific Insights into Robotics Problems
深度学习在机器人研究中的普及并不妨碍对机器人问题的科学洞察
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stewart Jamieson
  • 通讯作者:
    Stewart Jamieson
DeepSeeColor: Realtime Adaptive Color Correction for Autonomous Underwater Vehicles via Deep Learning Methods
DeepSeeColor:通过深度学习方法对自主水下航行器进行实时自适应色彩校正
Active Reward Learning for Co-Robotic Vision Based Exploration in Bandwidth Limited Environments
带宽有限环境中基于协作机器人视觉的探索的主动奖励学习
Biological Hotspot Mapping in Coral Reefs with Robotic Visual Surveys
利用机器人视觉调查绘制珊瑚礁生物热点图
Multi-Robot Distributed Semantic Mapping in Unfamiliar Environments through Online Matching of Learned Representations
通过学习表示的在线匹配在陌生环境中进行多机器人分布式语义映射

Stewart Jamieson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stewart Jamieson', 18)}}的其他基金

The influence of evolving bed topography on marine ice stream stability.
演化床地形对海洋冰流稳定性的影响。
  • 批准号:
    NE/J018333/1
  • 财政年份:
    2012
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Fellowship

相似海外基金

Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Standard Grant
How will Emperor Penguins Respond to Changing Ice Conditions (EPIC)?
帝企鹅将如何应对不断变化的冰况(EPIC)?
  • 批准号:
    NE/Y000676/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Standard Grant
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2881457
  • 财政年份:
    2023
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2881562
  • 财政年份:
    2023
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了