Nowcasting with Artificial Intelligence for African Rainfall: NAIAR

利用人工智能预测非洲降雨量:NAIAR

基本信息

  • 批准号:
    NE/Y000331/1
  • 负责人:
  • 金额:
    $ 71.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to use new digital solutions to create 0 to 6 hour predictions - nowcasting - for tropical storms using satellite data. The methods will be developed and rolled-out for Africa, where people urgently need information about storm hazards, through our existing online platforms and smartphone apps. In this way the results of the research will be used to deliver information on storm hazards to users within minutes. The project very closely addresses the NERC Digital Strategy. Tropical storms are very unpredictable, changing very rapidly - explosively - over timescales of an hour or so. For this reason, predictions are naturally very uncertain. Very often, the most important information people need regarding a storm hazard is what is happening now, and some information about how the storm likely to move and develop in the next couple of hours. This process is called "nowcasting" and in the USA, nowcasting of tornados saves many lives every year. The lack of weather radars in most African countries means that nowcasting is almost completely absent, but we have recently shown that satellite methods can provide useful nowcasting of storms too. The new Meteosat Third Generation (MTG) satellite will provide even better data coverage, from about 2024, at higher frequency and finer spatial scale. There is a tremendous opportunity to innovate in the creation of new nowcasting methods and communicate them to weather services, organisations and the public across Africa.While existing satellite nowcasting methods have some skill, they also have major shortcomings. They work by extrapolating observed patterns forward in time, but are not constrained to obey the laws of physics, and unphysical predictions commonly occur. The most challenging problem in storm nowcasting is to predict the initiation and subsequent development of new storms in future: there is no accepted way to do this, and our considerable knowledge of the physics of initiation is not being exploited. It takes about 30 minutes to generate these nowcasts, and when their accuracy is degrading after an hour or two, their use becomes limited. We aim to create useful 6-hour nowcasts.Nowcasting is an obvious application where new data-science methods, in particular machine-learning (ML), have the potential to make a massive impact, and a number of groups have begun to propose practical solutions. We need fundamental research to understand and improve the performance of these data-driven solutions, on the basis of the underlying physics and fluid-dynamics of storms. For instance, existing methods can extrapolate an image of a storm forward in time using ML to predict its future movement or growth, but the result may grow and be distorted in shape in a way which is incompatible with the laws of physics. These unrealistic predictions are obvious to an experienced forecaster but ordinary users of the data will be vulnerable to the consequences of inaccurate nowcasts. When nowcasts are used to predict hazards such as floods, unphysical solutions could lead to bad decisions.In this project, we aim to combine machine-learning, theoretical fluid dynamics, operational prediction and meteorology, to create innovative approaches to nowcasting of tropical storms. We will develop ML methods which are fast, and which obey physical laws, like the weather prediction models. Our solutions will include statistical forecasts of rainfall probabilities, as well as ensembles of forecast realisations, and an automated evaluation system will be created. Recent advances in physical understanding and the new data offered by MTG, will be used to create statistical nowcasts of storm initiation and its subsequent evolution. We will apply these methods through our existing web-based and mobile-phone communication portals delivering information to Africa, and support colleagues in Africa to exploit the methods locally.
该项目旨在利用新的数字解决方案,利用卫星数据对热带风暴进行 0 至 6 小时的预测(临近预报)。这些方法将为非洲开发和推广,那里的人们迫切需要通过我们现有的在线平台和智能手机应用程序获得有关风暴危害的信息。通过这种方式,研究结果将用于在几分钟内向用户提供有关风暴危害的信息。该项目非常密切地关注 NERC 数字战略。热带风暴非常难以预测,在一个小时左右的时间尺度内变化非常迅速——爆炸性的。因此,预测自然是非常不确定的。通常,人们需要的有关风暴危害的最重要信息是现在正在发生的情况,以及有关风暴在未来几个小时内可能如何移动和发展的一些信息。这个过程称为“临近预报”,在美国,龙卷风临近预报每年可以挽救许多人的生命。大多数非洲国家缺乏气象雷达,意味着几乎完全不存在临近预报,但我们最近表明,卫星方法也可以提供有用的风暴临近预报。从 2024 年左右开始,新的气象卫星第三代 (MTG) 卫星将以更高的频率和更精细的空间尺度提供更好的数据覆盖范围。在创建新的临近预报方法并将其传达给整个非洲的气象服务机构、组织和公众方面存在着巨大的机会。虽然现有的卫星临近预报方法具有一定的技巧,但它们也存在重大缺陷。它们的工作原理是及时推断观察到的模式,但不受物理定律的约束,并且通常会发生非物理预测。风暴临近预报中最具挑战性的问题是预测未来新风暴的产生和随后的发展:没有公认的方法可以做到这一点,而且我们对引发物理学的大量知识也没有被利用。生成这些即时预报大约需要 30 分钟,当它们的准确性在一两个小时后下降时,它们的使用就会受到限制。我们的目标是创建有用的 6 小时即时预报。即时预报是一种明显的应用,其中新的数据科学方法,特别是机器学习 (ML),有可能产生巨大影响,并且许多团体已经开始提出实用的建议解决方案。我们需要基础研究来理解和提高这些数据驱动解决方案的性能,以风暴的基本物理和流体动力学为基础。例如,现有方法可以使用机器学习及时推断风暴的图像,以预测其未来的运动或增长,但结果可能会增长并以与物理定律不相容的方式扭曲。这些不切实际的预测对于经验丰富的预报员来说是显而易见的,但数据的普通用户将很容易受到不准确的临近预报的后果的影响。当使用临近预报来预测洪水等灾害时,非物理解决方案可能会导致错误的决策。在这个项目中,我们的目标是将机器学习、理论流体动力学、业务预测和气象学结合起来,创建热带风暴临近预报的创新方法。我们将开发快速且遵守物理定律的机器学习方法,例如天气预报模型。我们的解决方案将包括降雨概率的统计预测以及预测实现的集合,并将创建一个自动评估系统。物理理解的最新进展和 MTG 提供的新数据将用于创建风暴爆发及其后续演变的统计即时预报。我们将通过现有的网络和移动电话通信门户应用这些方法,向非洲提供信息,并支持非洲同事在当地利用这些方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Parker其他文献

Regional Recurrence After Negative Sentinel Lymph Node Biopsy for Melanoma
黑色素瘤前哨淋巴结活检阴性后区域复发
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Grant W. Carlson;Andrew J. Page;Cynthia Cohen;Douglas Parker;Ron Yaar;Anya Li;A. Hestley;K. Delman;Douglas R. Murray
  • 通讯作者:
    Douglas R. Murray

Douglas Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Parker', 18)}}的其他基金

GENESIS: Dynamics and parametrisation of deep convective triggering, maintenance and updraughts
GENESIS:深对流触发、维持和上升气流的动力学和参数化
  • 批准号:
    NE/N013840/1
  • 财政年份:
    2016
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
Vegetation Effects on Rainfall in West Africa (VERA)
植被对西非降雨量的影响 (VERA)
  • 批准号:
    NE/M003574/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
IMPALA: Improving Model Processes for African cLimAte
IMPALA:改进非洲气候模型流程
  • 批准号:
    NE/M017176/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
AMMA-2050 NEC05274
AMMA-2050 NEC05274
  • 批准号:
    NE/M020126/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)
对流组织与季风降水、大气、地表和海洋的相互作用 (INCOMPASS)
  • 批准号:
    NE/L013843/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
AMMA Further Analysis: Convective life-cycles over African continental surfaces
AMMA 进一步分析:非洲大陆表面的对流生命周期
  • 批准号:
    NE/G018499/1
  • 财政年份:
    2010
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
Fennec - The Saharan Climate System
耳廓狐 - 撒哈拉气候系统
  • 批准号:
    NE/G017166/1
  • 财政年份:
    2010
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
Diabatic influences on mesoscale structures in extratropical storms
非绝热对温带风暴中尺度结构的影响
  • 批准号:
    NE/I005218/1
  • 财政年份:
    2010
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
African Monsoon Multidisciplinary Analyses - UK (AMMA-UK).
非洲季风多学科分析 - 英国 (AMMA-UK)。
  • 批准号:
    NE/B505554/1
  • 财政年份:
    2006
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Research Grant
Gene transfer to improve experimental corneal graft survival
基因转移提高实验性角膜移植物的存活率
  • 批准号:
    nhmrc : 275577
  • 财政年份:
    2004
  • 资助金额:
    $ 71.89万
  • 项目类别:
    NHMRC Postgraduate Scholarships

相似国自然基金

光控NO人造细胞的构建及其对黑色素瘤的治疗研究
  • 批准号:
    22374033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
  • 批准号:
    52302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于YE1-BE3-FNLS编辑人造血干细胞的研究
  • 批准号:
    32371549
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可级联催化和运动变形的人造细胞构建及其在硼中子俘获治疗肿瘤中的研究
  • 批准号:
    82373206
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于CaO-TiO2-ZrO2-Nd2O3(CeO2)体系的新型人造岩石基材及其稳定性研究
  • 批准号:
    52361002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342748
  • 财政年份:
    2024
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Standard Grant
CAREER: How Collaboration and Competition Influence Research in the Emerging Field of Artificial Intelligence
职业:合作和竞争如何影响人工智能新兴领域的研究
  • 批准号:
    2337564
  • 财政年份:
    2024
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Continuing Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
  • 批准号:
    2335605
  • 财政年份:
    2024
  • 资助金额:
    $ 71.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了