PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC)
化学品进入淡水的途径及其生态影响(太平洋)
基本信息
- 批准号:NE/X015947/1
- 负责人:
- 金额:$ 103.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Manufactured chemicals are essential for the maintenance of public health, food production, and quality of life, including a diverse range of pharmaceuticals, pesticides, and personal care products. The use of these compounds throughout society has led to increasing concentrations and chemodiversity in the environment. Whilst there has been a focus on understanding the impacts of chemicals on a subset of freshwater biodiversity (particularly invertebrates and fish), we understand less about how chemical pollution impacts freshwater microbes. These microbial communities (the 'microbiome') number in the millions to billions of cells per milliliter of water or gram of sediment and form the most biodiverse and functionally important component of freshwater ecosystems. The biogeochemical and ecological functions delivered by freshwater microbes are essential to wider freshwater ecosystem health. The PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC) project will focus on understanding the link between sources of anthropogenic chemicals and their pathways, fate and ecological impacts in freshwater ecosystems, with an emphasis on freshwater microbial ecosystems and the functions they perform. We will investigate the relationship between predicted diffuse and point source chemical pathways and measured chemical concentrations in water and sediments at locations across the Thames and Bristol Avon catchments, chosen to represent gradients of diffuse pollution sources. These locations will be chosen to coincide with Wastewater Treatment Works (WwTWs) to understand how sewage effluent contributes to chemical burden across these gradients. Liquid chromatography coupled with (high resolution) tandem mass spectrometry and QTOF (quadrupole Time-of-Flight) mass spectrometry will be used to perform targeted and untargeted profiling of chemical groups proven and suspected to impact freshwater ecology. A range of microbial community ecosystem endpoints will also be measured at each location to identify the impact of chemical exposure, including bacterial and fungal community composition via DNA sequencing, the expression of nutrient cycling and chemical stress and resistance genes, the production of extracellular enzymes involved with biogeochemical cycling, and the functional gene repertoire of whole microbial communities.We will perform experimental microcosm exposures on freshwater microbial communities, with increasing complexity and realism, deploying high-throughput screening to identify novel chemical groups (and their structural features) with the capacity to restructure these communities. Exemplar microbial community modifying chemicals will be investigated in more detail by applying cutting-edge molecular techniques to determine ecological exposure thresholds that represent different taxonomic and functional aspects of freshwater microbial ecosystems. Novel field-based mesocosms will be used to explore wastewater exposures in more realistic, but controlled settings, allowing us to explore how chemical pollution may interact with other ecological drivers such as nutrients and temperature, and how microbial responses scale up to higher trophic levels and alter ecosystem functioning.Spatially and temporally up-scaled models of diffuse and point source chemical pollution pathways will be combined with novel thresholds developed from the lab and field exposures, to determine chemical threats to freshwater microbes, supporting the development of tools for the better management of the risks of chemical pollution to freshwater ecosystem health. These will be combined with future hydrological, climate, and socio-economic scenarios, informed by responses in our experiments and co-developed with project collaborators, the Environment Agency, to explore future threats to microbial freshwater ecosystems and wider ecosystem health.
人造化学品对于维持公共卫生、粮食生产和生活质量至关重要,包括各种药品、农药和个人护理产品。这些化合物在整个社会的使用导致环境中的浓度和化学多样性不断增加。虽然人们一直关注化学品对淡水生物多样性子集(特别是无脊椎动物和鱼类)的影响,但我们对化学污染如何影响淡水微生物了解甚少。这些微生物群落(“微生物组”)的数量为每毫升水或每克沉积物数百万至数十亿个细胞,构成淡水生态系统中生物多样性最丰富且功能最重要的组成部分。淡水微生物提供的生物地球化学和生态功能对于更广泛的淡水生态系统健康至关重要。化学品进入淡水的途径及其生态影响(PACIFIC)项目将侧重于了解人为化学品来源及其在淡水生态系统中的途径、归宿和生态影响之间的联系,重点是淡水微生物生态系统及其所发挥的功能。我们将研究预测的扩散和点源化学路径与泰晤士河和布里斯托尔雅芳流域各地的水和沉积物中测量的化学浓度之间的关系,选择代表扩散污染源的梯度。这些地点将选择与废水处理厂 (WwTW) 一致,以了解污水排放如何影响这些梯度的化学负荷。液相色谱与(高分辨率)串联质谱和 QTOF(四极杆飞行时间)质谱相结合,将用于对已证实和怀疑影响淡水生态的化学基团进行靶向和非靶向分析。还将在每个地点测量一系列微生物群落生态系统端点,以确定化学品暴露的影响,包括通过 DNA 测序确定细菌和真菌群落组成、营养循环和化学应激和抗性基因的表达、涉及的细胞外酶的产生与生物地球化学循环,以及整个微生物群落的功能基因库。我们将对淡水微生物群落进行实验微观暴露,其复杂性和真实性不断增加,部署高通量筛选来识别新的化学基团(及其结构特征)具有重组这些社区的能力。将通过应用尖端分子技术来更详细地研究示例性微生物群落修饰化学品,以确定代表淡水微生物生态系统不同分类和功能方面的生态暴露阈值。新型基于现场的中生态系统将用于在更现实但受控的环境中探索废水暴露,使我们能够探索化学污染如何与其他生态驱动因素(例如营养物和温度)相互作用,以及微生物反应如何扩大到更高的营养水平和改变生态系统功能。扩散和点源化学污染途径的空间和时间放大模型将与实验室和现场暴露开发的新阈值相结合,以确定对淡水微生物的化学威胁,支持开发工具更好地管理化学污染对淡水生态系统健康的风险。这些将与未来的水文、气候和社会经济情景相结合,以我们实验中的反应为基础,并与项目合作者环境署共同开发,以探索微生物淡水生态系统和更广泛的生态系统健康的未来威胁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Read其他文献
Journal of Experimental Psychology : Learning , Memory , and Cognition DRIFT : An Analysis of Outcome Framing in Intertemporal Choice
实验心理学杂志:学习、记忆和认知漂移:跨期选择结果框架的分析
- DOI:
10.1177/1948550611411311 - 发表时间:
2012 - 期刊:
- 影响因子:5.7
- 作者:
Daniel Read;Shane Frederick;M. Scholten - 通讯作者:
M. Scholten
Journal of Experimental Psychology : Learning , Memory , and Cognition Tradeoffs Between Sequences : Weighing Accumulated Outcomes Against Outcome-Adjusted Delays
实验心理学杂志:学习、记忆和认知序列之间的权衡:权衡累积结果与结果调整延迟
- DOI:
10.1007/s10683-020-09695-3 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:2.3
- 作者:
Daniel Read;M. Scholten - 通讯作者:
M. Scholten
Legitimating innovation through category positioning: a case study of The Hundred cricket competition
通过品类定位使创新合法化:百强板球比赛案例研究
- DOI:
10.1108/sbm-04-2023-0038 - 发表时间:
2023-10-05 - 期刊:
- 影响因子:0
- 作者:
Daniel Read - 通讯作者:
Daniel Read
Limitations in artificial spin ice path selectivity: the challenges beyond topological control
人工自旋冰路径选择性的局限性:拓扑控制之外的挑战
- DOI:
10.1088/1367-2630/17/1/013054 - 发表时间:
2015-01-27 - 期刊:
- 影响因子:3.3
- 作者:
S. Walton;K. Zeissler;D. M. Burn;S. Ladak;Daniel Read;T. Tyliszczak;Lesley F. Cohen;W. Branford - 通讯作者:
W. Branford
The Efficacy of Different Methods for Informing the Public About the Range Dependency of Magnetic Fields from High Voltage Power Lines
向公众通报高压输电线磁场范围依赖性的不同方法的功效
- DOI:
10.1111/j.1539-6924.1998.tb00373.x - 发表时间:
1998-10-01 - 期刊:
- 影响因子:3.8
- 作者:
Daniel Read;M. G. Morgan - 通讯作者:
M. G. Morgan
Daniel Read的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Read', 18)}}的其他基金
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
- 批准号:
NE/Z000173/1 - 财政年份:2024
- 资助金额:
$ 103.8万 - 项目类别:
Research Grant
BBSRC Institute Strategic Programme: Decoding Biodiversity (DECODE) - Partner Grant
BBSRC 研究所战略计划:解码生物多样性 (DECODE) - 合作伙伴资助
- 批准号:
BB/X020037/1 - 财政年份:2023
- 资助金额:
$ 103.8万 - 项目类别:
Research Grant
Unlocking wetland ecologies and agriculture in prehistory through sulphur isotopes.
通过硫同位素解锁史前时期的湿地生态和农业。
- 批准号:
NE/W000814/1 - 财政年份:2022
- 资助金额:
$ 103.8万 - 项目类别:
Research Grant
NEC05836 The environmental REsistome: confluence of Human and Animal Biota in antibiotic resistance spread (REHAB)
NEC05836 环境 REsistome:人类和动物生物群在抗生素耐药性传播中的汇合 (REHAB)
- 批准号:
NE/N019660/1 - 财政年份:2016
- 资助金额:
$ 103.8万 - 项目类别:
Research Grant
NSF: Molecular Engineering of Polymers for Processing Performance and Properties
NSF:聚合物分子工程的加工性能和特性
- 批准号:
EP/D06631X/1 - 财政年份:2007
- 资助金额:
$ 103.8万 - 项目类别:
Research Grant
相似国自然基金
典型行业高浓度挥发性化学品的大气氧化机制和动力学
- 批准号:22306002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于光驱动化学品合成的半导体材料-微生物杂合体的生产策略研究
- 批准号:32300065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
醛肟脱水酶底物偏好性的理性改造及催化生物基腈化学品合成
- 批准号:22378092
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新型CRISPR筛选的有机氯化学品诱导肿瘤细胞转移的机制解析
- 批准号:42307365
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多孔中空铜/聚苯胺选择性电催化CO2还原制备C2化学品与机制研究
- 批准号:22309125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC)
化学品进入淡水的途径及其生态影响(太平洋)
- 批准号:
NE/X015890/1 - 财政年份:2022
- 资助金额:
$ 103.8万 - 项目类别:
Research Grant
The role of TMTC4, endoplasmic reticulum Ca2+ flux, and the unfolded protein response in noise-induced hearing loss
TMTC4、内质网 Ca2 通量和未折叠蛋白反应在噪声性听力损失中的作用
- 批准号:
10599869 - 财政年份:2020
- 资助金额:
$ 103.8万 - 项目类别: