Fish gut carbonates and the control of ocean alkalinity
鱼肠道碳酸盐与海洋碱度的控制
基本信息
- 批准号:NE/X008649/1
- 负责人:
- 金额:$ 25.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The global oceans currently absorb ~30% of anthropogenic CO2 emissions. The carbon cycle that regulates this ocean-atmosphere CO2 exchange, and the associated vertical distribution of dissolved carbon and alkalinity that influences the ocean's absorption capacity, depends on several processes. These are described as a series of interacting "pumps": a physical/chemical solubility pump; a biological 'soft tissue' pump; and a calcium carbonate pump. Understanding these three pumps, how they interact, and their atmospheric CO2 feedbacks is especially critical for accurate predictions of how the marine carbon cycle and global climate will change in the future. Calcium carbonate is a white, chalky mineral produced by a range of marine organisms. Importantly, when it dissolves it increases the alkalinity of seawater, which can reduce the seawater CO2 concentration below atmospheric CO2 levels and 'suck' anthropogenic CO2 from the atmosphere. Knowing exactly where it dissolves (how near the ocean surface) is therefore key to understanding the role this calcium carbonate pump plays in regulating ocean chemistry and atmospheric CO2. The operation of the calcium carbonate pump not only depends on the production rate but also the types of carbonate minerals that are produced by marine organisms, the rate at which they sink, and how rapidly these carbonate minerals then dissolve. Most ocean carbon cycle models make the assumption that carbonate production is dominated by the plankton and coccolithophores (microscopic algae). However, we now know that very large amounts of carbonate are excreted by marine bony fish (teleosts). This carbonate, which we now also know is mineralogically diverse depending on the fish species, is continuously produced in the intestines of fish and excreted as waste. The potential significance of this process to the marine CaCO3 pump was recognised in an initial modelling exercise led by PI Wilson (Science, 2009) which conservatively suggested that fish may account for at least 3-15% of total marine CaCO3 production globally, and realistically as much as 45%. Since that first modelling exercise the science behind this process has advanced hugely. As a group (and through the work of others) we now know that fish produce a hugely diverse range of carbonate mineral types, which existing knowledge would suggest should dissolve at very different rates. As a result, the assumptions in the first modelling efforts that fish produce uniform and relatively soluble carbonate types are no longer valid. Whilst we can already address some of the knowledge gaps, there is little or no data for fish from families that comprise ~94% of global fish biomass - including almost no data for mesopelagic fish that alone account for at least 60% of fish biomass. The daily vertical migration of their immense biomass is hypothesised to drive a novel "upward alkalinity pump", which may provide an important offset to the downward transport of alkalinity driven by other established processes. Also, we now have good evidence to show that production rates by fish vary with metabolic rate (which is greatest in the globally significant active epipelagic fishes), and importantly also depending upon feeding and diet (especially the calcium content of the diet). Thus, again, necessary assumptions in early models that all fish produce carbonate at the same rate are no longer realistic to use for modelling. Over and above these issues we also have little to no data on the rates at which these carbonates sink in the oceans or dissolve. The aim of this project is therefore to deliver new empirical data on fish carbonate production, mineralogies, solubilities and sinking rates to inform the first spatially- and mineralogically-resolved global production estimates, thus enabling us to parameterise models assessing fish contributions to the marine carbon cycle both under present day conditions, and for climate change scenarios in the future.
目前,全球海洋吸收了约 30% 的人为二氧化碳排放量。调节海洋-大气二氧化碳交换的碳循环,以及影响海洋吸收能力的溶解碳和碱度的相关垂直分布,取决于几个过程。这些被描述为一系列相互作用的“泵”:物理/化学溶解度泵;生物“软组织”泵;和碳酸钙泵。了解这三个泵、它们如何相互作用以及它们对大气二氧化碳的反馈对于准确预测未来海洋碳循环和全球气候将如何变化尤其重要。碳酸钙是一种白色白垩质矿物质,由多种海洋生物产生。重要的是,当它溶解时,会增加海水的碱度,从而将海水二氧化碳浓度降低到大气二氧化碳水平以下,并从大气中“吸收”人为二氧化碳。因此,准确了解其溶解位置(距离海洋表面有多近)是了解碳酸钙泵在调节海洋化学和大气二氧化碳方面所发挥作用的关键。碳酸钙泵的运行不仅取决于生产率,还取决于海洋生物产生的碳酸盐矿物的类型、它们下沉的速度以及这些碳酸盐矿物溶解的速度。大多数海洋碳循环模型假设碳酸盐的产生主要由浮游生物和颗石藻(微观藻类)主导。然而,我们现在知道海洋硬骨鱼(硬骨鱼)会分泌大量碳酸盐。我们现在也知道,这种碳酸盐在矿物学上因鱼类种类而异,在鱼的肠道中不断产生并作为废物排出体外。 PI Wilson(《科学》,2009 年)领导的初步建模活动认识到了这一过程对海洋 CaCO3 泵的潜在重要性,该模型保守地认为鱼类可能至少占全球海洋 CaCO3 总产量的 3-15%,而实际上,高达45%。自从第一次建模练习以来,这个过程背后的科学已经取得了巨大的进步。作为一个群体(并通过其他人的工作),我们现在知道鱼类产生种类繁多的碳酸盐矿物类型,现有知识表明这些矿物的溶解速度应该非常不同。因此,第一次建模工作中关于鱼类产生均匀且相对可溶的碳酸盐类型的假设不再有效。虽然我们已经可以解决一些知识差距,但关于占全球鱼类生物量约 94% 的科鱼类的数据很少或根本没有 - 包括几乎没有仅占鱼类生物量至少 60% 的中层鱼类的数据。假设它们巨大的生物量的每日垂直迁移会驱动一种新型的“向上碱度泵”,这可能为其他已建立的过程驱动的碱度向下输送提供重要的抵消。此外,我们现在有充分的证据表明,鱼类的生产率随代谢率而变化(在全球重要的活跃上层鱼类中代谢率最高),而且重要的是还取决于喂养和饮食(尤其是饮食中的钙含量)。因此,早期模型中所有鱼类以相同速率产生碳酸盐的必要假设对于建模来说不再现实。除了这些问题之外,我们也几乎没有关于这些碳酸盐在海洋中下沉或溶解的速率的数据。因此,该项目的目的是提供有关鱼类碳酸盐产量、矿物学、溶解度和沉降率的新经验数据,为第一个空间和矿物学解析的全球产量估计提供信息,从而使我们能够参数化模型,评估鱼类对海洋碳的贡献循环既适用于当前条件,也适用于未来的气候变化情景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rod Wilson其他文献
Rod Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rod Wilson', 18)}}的其他基金
FishOtlilithPhysio - Fish Otolith Physiology, and Implications for Climate Change, Conservation, and Fisheries Management
FishOtlilithPhysio - 鱼类耳石生理学以及对气候变化、保护和渔业管理的影响
- 批准号:
EP/Y023730/1 - 财政年份:2024
- 资助金额:
$ 25.74万 - 项目类别:
Fellowship
Transformational blueprint for a blue economy on UK terrestrial farms: integrating sustainable shrimp production in a changing agricultural landscape
英国陆地农场蓝色经济转型蓝图:将可持续虾类生产融入不断变化的农业景观
- 批准号:
BB/W018039/1 - 财政年份:2022
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
Impact of CO2 and salinity in aquaculture on physiology, growth and health of coho salmon
水产养殖中二氧化碳和盐度对银大麻哈鱼生理、生长和健康的影响
- 批准号:
NE/T01458X/1 - 财政年份:2020
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
ProtoNutrition, Robustness, Oxygen and Omega-3 in Salmon (ProtoROOS)
三文鱼中的原始营养、稳健性、氧气和 Omega-3 (ProtoROOS)
- 批准号:
BB/S016236/1 - 财政年份:2019
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
The role of water chemistry in zebrafish welfare and reproducibility of research studies
水化学在斑马鱼福利和研究再现性中的作用
- 批准号:
NC/S001123/1 - 财政年份:2018
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
Optimising ammonia to improve sustainability in highly buffered recirculating aquaculture systems (RAS)
优化氨以提高高缓冲循环水产养殖系统 (RAS) 的可持续性
- 批准号:
BB/N013344/1 - 财政年份:2017
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
Using physiology to optimise water quality and the sustainability of intensive recirculating aquaculture systems (RAS)
利用生理学优化水质和集约化循环水产养殖系统 (RAS) 的可持续性
- 批准号:
BB/M017583/1 - 财政年份:2015
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
Using integrative acid-base physiology to improve the efficiency and sustainability of fish production
利用综合酸碱生理学提高鱼类生产的效率和可持续性
- 批准号:
BB/J00913X/1 - 财政年份:2013
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
Fish Carbonates - Their dissolution potential under elevated hydrostatic pressure
鱼碳酸盐 - 在升高的静水压力下的溶解潜力
- 批准号:
NE/I017720/1 - 财政年份:2012
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
SD4: Improved understanding of population, community and ecosystem impacts of ocean acidification for commercially important species
SD4:更好地了解海洋酸化对具有重要商业价值的物种的种群、群落和生态系统的影响
- 批准号:
NE/H017402/1 - 财政年份:2011
- 资助金额:
$ 25.74万 - 项目类别:
Research Grant
相似国自然基金
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
- 批准号:82330014
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
- 批准号:32302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Odoribacter splanchnicus A3调节肠道菌群并通过TIPE2-AKT-mTOR信号通路调控Th17/Treg分化治疗溃疡性结肠炎的机制研究
- 批准号:82300630
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
发酵乳杆菌B44胞外多糖通过调控儿童高血铅肠道MUC2分泌抑制重金属铅吸收的机制研究
- 批准号:82300626
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 25.74万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 25.74万 - 项目类别:
Studentship
脳内histamine神経系による腸管バリア制御機序の解明とleaky gut関連疾患への治療応用
阐明大脑中组胺神经系统的肠道屏障控制机制及其在肠漏相关疾病中的治疗应用
- 批准号:
24K11163 - 财政年份:2024
- 资助金额:
$ 25.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gut-brain axisからみたMetabolic surgeryの血糖抑制効果
肠脑轴视角下代谢手术的血糖控制效果
- 批准号:
24K11741 - 财政年份:2024
- 资助金额:
$ 25.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detection of novel therapeutic targets and biomarkers via identification of beneficial oral/ gut bacteria to enhance the response of PD1/PD-L1 blockade therapy in oral cancer patients
通过鉴定有益的口腔/肠道细菌来检测新的治疗靶点和生物标志物,以增强口腔癌患者 PD1/PD-L1 阻断疗法的反应
- 批准号:
24K13070 - 财政年份:2024
- 资助金额:
$ 25.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)