High speed imaging with diamond dynode detectors: a technological advance with major commercial applications

使用金刚石打拿极探测器进行高速成像:重大商业应用的技术进步

基本信息

  • 批准号:
    ST/G003475/1
  • 负责人:
  • 金额:
    $ 23.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

1. The purpose of the project Development and commercialization of imaging detectors using artificial diamond technology to provide greatly enhanced performance. 2. Introduction The need to detect fast signals is crucial in many disciplines. Very high speed, low amplitude light signals need signal amplification. The photomultiplier tube (PMT) was the first device to use electronic signal amplification in a vacuum tube for optical light and has been a workhorse detector since. Though silicon chips have replaced vacuum tubes as the technology of choice in most imaging applications they have limited high speed and sensitivity performance compared with devices such as the PMT. The aim of this project is to apply detector technology and know-how from the Space Research Centre (SRC), Leicester, developed through space science R & D, together with recent developments in diamond chemistry at the Diamond Group, Bristol, to the commercialization of an imaging PMT with ground-breaking performance for widespread commercial application and specific relevance to the defence sector / fusion plasma diagnostics at the Atomic Weapons Establishment, Aldermaston. 3. Advantages of Diamond as an electron amplification material a) High gain: Diamond is one of a small number of materials which has high electron gain when correctly treated. b) Simplified design: Diamond can have a higher gain per amplification stage, resulting in a lower number of stages being required for a given gain. c) Enhanced timing: The amplification properties of diamond allow improved signal timing and reduced background. d) Lower gain variability: The higher gain of diamond reduces the variability in the gain. e) Low noise: Diamond is less susceptible to thermal noise so it can operate with lower noise levels or at higher temperatures. f) Large area: Synthetic diamond offers low cost, large area coating and is easily grown on shaped surfaces. g) Stability: Synthetic diamond has a stable performance over long periods. Its performance remains high after exposure to air. The electron gain properties of synthetic diamond promises to greatly expand the usage of PMTs in many fields. 4. Application of synthetic Diamond to Detectors We have already measured the performance of synthetic diamond and our measured data supports published results and demonstrates the potential benefits of synthetic diamond as a detector material. This project will transfer the technology from proof-of-concept to prototype, beginning with optimization of manufacturing processes. Firstly we will manufacture two demonstrator detectors to provide data on process optimization. The next stage of the project will be development of a single transmissive gain stage. Transmissive dynodes can operate in two modes: - a) Transmission: input electrons enter through one surface of a thin film of diamond, and output electrons exit through the other. b) Refection: diamond is deposited on an open conductive wire mesh. Input and output electrons enter and exit through the same diamond surface. The transmission technique is superior, providing better detector performance, but is more demanding because of the need to produce very thin films, however we have already demonstrated manufacture. We will investigate both techniques and choose the optimum technology based on performance, manufacturability, developmental and manufacturing costs, and development timescale. We will initially demonstrate a single stage transmissive gain stage to provide comprehensive device diagnostics. The final stage of the project is to design, build and demonstrate a detector using a stack of gain stages with fast response and high gain and incorporating an imaging capability. Performance evaluation will involve testing with AWE collaborators at Aldermaston and field trials in a laser fusion facility at Los Alamos, and in photon counting mode at Photek and SRC.
1。使用人工钻石技术对探测器进行项目开发和商业化的目的,以极大地增强性能。 2。引言需要在许多学科中检测快速信号至关重要。非常高的速度,低振幅信号需要信号放大。光电倍增管(PMT)是第一个在真空管中使用电子信号放大的装置进行光学光,从那以后一直是主力检测器。尽管与PMT等设备相比,在大多数成像应用中,硅芯片已代替了真空管作为选择的技术,但它们的高速和灵敏度性能有限。该项目的目的是通过太空科学研发开发的太空研究中心(SRC)的探测器技术和知识,以及布里斯托尔钻石集团钻石化学的最新发展,将成像PMT的商业化与与国防部 /融合式武装的广泛商业应用和特定相关性的突破性绩效进行商业化。 3。钻石作为电子扩增材料的优势a)高增益:钻石是少数材料之一,在正确处理时具有高电子增益。 b)简化的设计:钻石每个放大阶段的增益可能更高,从而导致给定增益所需的阶段数量较低。 c)增强的时机:钻石的扩增特性可改善信号时机和背景减少。 D)较低的增益变异性:较高的钻石增益降低了增益的可变性。 e)低噪声:钻石不太容易受到热噪声的影响,因此它可以以较低的噪声水平或较高的温度下操作。 f)大面积:合成钻石可提供低成本,大面积涂料,并且在形状表面上很容易生长。 g)稳定性:合成钻石在长期内具有稳定的性能。暴露于空气后,其性能保持较高。合成钻石的电子增益特性有望在许多领域中大大扩展PMT的使用。 4.合成钻石在检测器中的应用,我们已经测量了合成钻石的性能,我们的测量数据支持已发表的结果,并证明了合成钻石作为检测器材料的潜在益处。该项目将从概念验证到原型,从优化制造过程开始。首先,我们将制造两个示范探测器,以提供有关过程优化的数据。该项目的下一个阶段将是开发单个传播增益阶段。透射剂可以以两种模式运行: - a)传输:输入电子通过钻石薄膜的一个表面输入,而输出电子则通过另一种出口。 b)反射:钻石沉积在开放的导电线网上。输入和输出电子通过相同的钻石表面进入并退出。传输技术是优越的,提供了更好的检测器性能,但是由于需要生产非常薄的膜,因此要求更高,但是我们已经证明了制造商。我们将根据性能,制造性,发展性和制造成本以及开发时间范围来研究这两种技术,并选择最佳技术。我们最初将展示一个单阶段的传播增益阶段,以提供全面的设备诊断。该项目的最后阶段是使用一堆具有快速响应和高增益的增益阶段设计,构建和演示检测器,并结合成像能力。绩效评估将涉及与Aldermaston的Awe合作者和Los Alamos的激光融合设施中的现场试验以及Photek和SRC的Photon Counting模式进行测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Lapington其他文献

Jonathan Lapington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Lapington', 18)}}的其他基金

LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X00645X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
UK participation in the pre-production phase of CTA extension 2022
英国参与 2022 年 CTA 延期的预制作阶段
  • 批准号:
    ST/X001741/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
UK participation in the pre-production phase of CTA extension 2021
英国参与 2021 年 CTA 延期的预制作阶段
  • 批准号:
    ST/V006371/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
CTA Pre-production Phase Extension 2020
CTA 预生产阶段延长 2020 年
  • 批准号:
    ST/V000330/1
  • 财政年份:
    2020
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
RCUK Innovation Fellow
RCUK创新研究员
  • 批准号:
    ST/R00501X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Fellowship
Upgrade of Vacuum UV Detector Calibration Facility
真空紫外检测器校准设施升级
  • 批准号:
    ST/S002375/1
  • 财政年份:
    2018
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
CTA-UK
英国CTA
  • 批准号:
    ST/S00260X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
CTA Bridging Proposal
CTA 过渡提案
  • 批准号:
    ST/N00146X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
UK Participation in the Pre-production Phase of the Cherenkov Telescope Array 2015-2017
英国参与切伦科夫望远镜阵列预生产阶段 2015-2017
  • 批准号:
    ST/M007588/1
  • 财政年份:
    2015
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant
Linear Geiger Mode Detector Technology for Time Resolved Spectral Measurements
用于时间分辨光谱测量的线性盖革模式检测器技术
  • 批准号:
    ST/N000129/1
  • 财政年份:
    2015
  • 资助金额:
    $ 23.11万
  • 项目类别:
    Research Grant

相似国自然基金

基于渐进式稀疏建模与深度学习的激光吸收光谱层析成像
  • 批准号:
    62371415
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
  • 批准号:
    82302153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基质带隙对上转换发射的损耗及其在超分辨成像中的应用
  • 批准号:
    12304444
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
  • 批准号:
    62301293
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
肝纤维化组织微结构特性弥散磁共振成像技术研究
  • 批准号:
    62371194
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
  • 批准号:
    10670648
  • 财政年份:
    2023
  • 资助金额:
    $ 23.11万
  • 项目类别:
Magnetic Rotational Exploratory Platform for Coronary Lesions
冠状动脉病变磁旋转探索平台
  • 批准号:
    10384033
  • 财政年份:
    2022
  • 资助金额:
    $ 23.11万
  • 项目类别:
Photo-hyperpolarized 13C MRI
光超极化 13C MRI
  • 批准号:
    10366910
  • 财政年份:
    2022
  • 资助金额:
    $ 23.11万
  • 项目类别:
High-resolution reflective microscope
高分辨率反射显微镜
  • 批准号:
    10546300
  • 财政年份:
    2022
  • 资助金额:
    $ 23.11万
  • 项目类别:
Photo-hyperpolarized 13C MRI
光超极化 13C MRI
  • 批准号:
    10710367
  • 财政年份:
    2022
  • 资助金额:
    $ 23.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了