Towards reliable assessment of pyroclastic density current hazards
实现火山碎屑密度电流危害的可靠评估
基本信息
- 批准号:NE/V014242/1
- 负责人:
- 金额:$ 81.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In a world where the human population keeps growing and is pushed to living in hazardous volcanic areas, volcanoes are increasingly becoming a larger threat to life. Volcanoes that erupt explosively have had devastating societal impacts, including covering countries in ash, changing the climate, and the extensive loss of human life. The most serious class of volcanic hazards is caused by volcanic flows, which include landslides, debris flows and the most dangerous of all, pyroclastic flows. Pyroclastic flows, made of scorching ash and gas, can burn and bury entire cities within minutes. These hot currents are typically composed of a basal dense avalanche and overriding dilute turbulent ash-cloud surge. Pyroclastic flows do not solely affect the ground, as they can also form large plumes of fine ash particles that rise to the altitude of cruising flights and can disrupt aviation paths. Predicting the propagation of these flows has been one of the largest challenges in geosciences because we lack a fundamental understanding of how complex granular media flow, i.e. our understanding of their rheology is very incomplete. This gap in our knowledge makes the impacts from pyroclastic flows very difficult to predict. The ability to forecast future pyroclastic flow velocity and inundation areas would help to limit the loss of human life and reduce economic impacts by informing mitigation strategies such as evacuations. Unfortunately, this goal cannot be achieved until we capture the physics of these currents and implement it in numerical models. The dense avalanche layer is a highly complex granular flow made of particles spanning a wide range of sizes (from microns to meters). The gas-particle coupling leads to elevated gas pressure and enables the transformation of the highly frictional granular avalanche into a mixture analogous to a liquid. While our understanding of granular flows has grown significantly in the past decade, previous studies have focused on steady configurations and simplified mixtures of grains. In nature, pyroclastic flows evolve over time as particles fragment and abrade by colliding with each other, and flows propagate across a variety of topographic obstacles such as valleys that control their behaviour, making their behaviour transient. Without a physical description of unsteady rheology of natural volcanic mixtures, we may never capture their behaviour accurately. Another major challenge we face is the time that current models require to run simulations of pyroclastic flows on highly resolved digital-elevation models. At the moment, all models use Central Processing Unit (CPU) computing to simulate volcanic flows, and require supercomputers to solve hundreds of scenarios taking days to weeks to complete. This project will take advantage of recent advances in computing abilities and analytical techniques available in physics and engineering and apply these to geosciences. These techniques will be used to study the dissipation energy from unsteady pyroclastic mixtures, enabling physical descriptions of the processes to be implemented in a new generation of volcanic flow model based on graphic cards. This new model will use Graphic Processing Unit (GPU) computing that can be undertaken on any laptop. This new model will allow highly resolved calculations and will radically transform our ability to forecast pyroclastic flow hazards and their interaction with topography, and enable volcanologists to undertake rapid hazard assessment when most needed: during volcanic unrest. Combining the findings and development from this study with other fields in geosciences will lead to important advances in how volcanic hazard assessment is undertaken and help limit loss of life.
在人口不断增长并被迫生活在危险的火山地区的世界中,火山日益成为对生命的更大威胁。爆发性喷发的火山造成了毁灭性的社会影响,包括火山灰覆盖多个国家、改变气候以及造成大量人员伤亡。最严重的一类火山灾害是由火山流引起的,其中包括山体滑坡、泥石流和最危险的火山碎屑流。由灼热的灰烬和气体组成的火山碎屑流可以在几分钟内燃烧并掩埋整个城市。这些热流通常由底部密集的雪崩和压倒性的稀湍流火山灰云涌组成。火山碎屑流不仅影响地面,还可能形成大量细小火山灰颗粒,上升到巡航航班的高度,并可能扰乱航空路线。预测这些流动的传播一直是地球科学中最大的挑战之一,因为我们缺乏对复杂颗粒介质如何流动的基本了解,即我们对其流变学的理解非常不完整。我们知识上的差距使得火山碎屑流的影响很难预测。预测未来火山碎屑流速和淹没区域的能力将有助于限制人员生命损失,并通过告知疏散等缓解策略来减少经济影响。不幸的是,只有我们捕获这些电流的物理原理并在数值模型中实现它,这个目标才能实现。致密雪崩层是一种高度复杂的颗粒流,由各种尺寸(从微米到米)的颗粒组成。气体-颗粒耦合导致气体压力升高,并使高摩擦力的粒状雪崩转变为类似于液体的混合物。虽然我们对颗粒流的理解在过去十年中显着增长,但之前的研究主要集中在稳定的结构和简化的颗粒混合物上。在自然界中,火山碎屑流随着粒子相互碰撞而破碎和磨损而随着时间的推移而演变,并且流穿过各种地形障碍物(例如控制其行为的山谷)传播,从而使其行为变得短暂。如果没有对天然火山混合物的不稳定流变学的物理描述,我们可能永远无法准确地捕捉它们的行为。我们面临的另一个主要挑战是当前模型需要在高分辨率数字高程模型上运行火山碎屑流模拟所需的时间。目前,所有模型都使用中央处理器(CPU)计算来模拟火山流,并需要超级计算机来解决数百个场景,需要几天到几周的时间才能完成。该项目将利用物理和工程领域计算能力和分析技术的最新进展,并将其应用于地球科学。这些技术将用于研究不稳定火山碎屑混合物的耗散能量,从而能够在基于显卡的新一代火山流模型中实现过程的物理描述。这个新模型将使用图形处理单元(GPU)计算,可以在任何笔记本电脑上进行。这个新模型将允许进行高精度计算,并将从根本上改变我们预测火山碎屑流灾害及其与地形相互作用的能力,并使火山学家能够在最需要的时候(即火山动荡期间)进行快速灾害评估。将这项研究的发现和发展与地球科学的其他领域相结合,将在火山灾害评估的实施方式方面取得重要进展,并有助于限制生命损失。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characteristics and controls of the runout behaviour of non-Boussinesq particle-laden gravity currents - A large-scale experimental investigation of dilute pyroclastic density currents
非布辛涅斯克粒子重力流的跳动行为特征与控制——稀火山碎屑密度流的大规模实验研究
- DOI:http://dx.10.1016/j.jvolgeores.2022.107697
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Brosch E
- 通讯作者:Brosch E
Repository - Unraveling Transient Dynamics in Particle-Laden Density Currents: Insights into Dilute Pyroclastic Density Current Runout
知识库 - 揭示充满粒子的密度流中的瞬态动力学:深入了解稀火山碎屑密度电流跳动
- DOI:http://dx.10.5281/zenodo.8375216
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Breard E
- 通讯作者:Breard E
The fragmentation-induced fluidisation of pyroclastic density currents.
碎裂引起的火山碎屑密度流流化。
- DOI:http://dx.10.1038/s41467-023-37867-1
- 发表时间:2023
- 期刊:
- 影响因子:16.6
- 作者:Breard ECP
- 通讯作者:Breard ECP
Physical properties of pyroclastic density currents: relevance, challenges and future directions
火山碎屑密度流的物理特性:相关性、挑战和未来方向
- DOI:http://dx.10.3389/feart.2023.1218645
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Jones T
- 通讯作者:Jones T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Breard其他文献
Eric Breard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水下发射系统连接结构损伤机理的环境-力学回溯与服役可靠性评估研究
- 批准号:52375124
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
考虑任务时序动态调整的航天测控系统可靠性评估方法研究
- 批准号:72301286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于使用异质性的退化产品可靠性评估与决策优化研究
- 批准号:72371182
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
基于概率图模型的载荷共享系统可靠性建模与评估
- 批准号:72371120
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
计及机-电不确定性因素耦合的空间机械臂长时定位精度可靠性评估方法
- 批准号:52305010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards a reliable and valid assessment of preteen suicidal thoughts and behavior
对青春期前的自杀想法和行为进行可靠和有效的评估
- 批准号:
10583418 - 财政年份:2023
- 资助金额:
$ 81.26万 - 项目类别:
NRI: Toward Safe and Reliable Robotic Eye Examinations
NRI:迈向安全可靠的机器人眼科检查
- 批准号:
10671768 - 财政年份:2023
- 资助金额:
$ 81.26万 - 项目类别:
Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
- 批准号:
10637895 - 财政年份:2023
- 资助金额:
$ 81.26万 - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 81.26万 - 项目类别:
NSF/FDA SIR: Robust, Reliable, and Trustworthy Regulatory Science Tool for Stroke Recovery Assessment using Hybrid Brain-Muscle Functional Coupling Analysis
NSF/FDA SIR:使用混合脑-肌肉功能耦合分析进行中风恢复评估的稳健、可靠且值得信赖的监管科学工具
- 批准号:
2229697 - 财政年份:2022
- 资助金额:
$ 81.26万 - 项目类别:
Standard Grant