Symbionts or genes? Integrating the evolutionary response to parasites across varying modalities of resistance.
共生体还是基因?
基本信息
- 批准号:NE/V011979/1
- 负责人:
- 金额:$ 82.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
All animals and plants are attacked by natural enemies - pathogens, parasites and predators - and the resulting mortality and morbidity drives ecological and evolutionary change. Indeed, much of animal biology is driven by natural selection to avoid or mitigate the impact of natural enemy attack, in the form of defences at the body surface to repel invaders, and defences within to clear attackers or reduce the damage caused. Most commonly, we think of defence systems as encoded in an animal's genome. Natural selection will cause genetic variants that provide resistance to increase in frequency when attack is common, and decline if they are costly in the absence of attack. However, recent work has found that symbiotic bacteria living within the animal can also provide protection against attack. In insects, these protective symbionts are commonly passed from mother to offspring, so they behave like genetic traits. The presence of attackers will mean individuals carrying the symbiont leave more offspring, and thus natural selection increases the frequency of the symbiont. The discovery that animal populations can evolve resistance to attack by both changes to the genome and by the spread of symbionts raises fundamental evolutionary questions. However, because the two processes have been studied in isolation, we have little understanding of how they interact and differ. To address this gap in our knowledge, we propose to study how genes and protective symbionts contribute to the evolution of resistance to parasitic wasps in laboratory populations of fruit flies. Our first aim is to understand how different modes of protection interact within individuals and populations. If both types of variation exist, does stronger resistance evolve? Environmental factors, like temperature and food stress, have very different effects on the different modes of resistance. We will therefore test whether the environment determines which mode of resistance evolves.We will then examine two aspects of symbiont defence that make them distinct from defence within the genome, and determine how these impact the evolution of defence. The first distinction is that protective symbionts typically have multiple effects on their host - aside protection, they can provide nutritional benefits, alter thermal tolerance, and favour the production of daughters over sons. It is the combination of these traits that drive symbionts to spread within populations, and multiple effects thus potentially favour protective symbionts defences over genes in the genome. We will test this hypothesis by examining how sex ratio distortion shifts the balance between genes and symbionts during the evolution of resistance.The second distinction is that protective symbiont mediated defence is an unusual trait. It is not simply 'off' or 'on', but the efficiency depends on the number of bacteria present, like an army is more effective when it contains more soldiers. The number of symbionts ('titre') can be affected by the environment, and importantly, can be transmitted between generations. A female who has many bacteria and is well defended produces daughters who likewise have many bacteria and are well defended. This unusual arrangement means that natural selection may act on the number of bacteria. Our final aim therefore is to investigate symbiont titre and the degree to which it impacts on the evolutionary response to parasite attack. Does natural selection act on titre? Do these effects last over generations? Does this process produce close tracking of resistance to the parasite threat level? This study will be the first investigation of how the existence of these two defence modes shapes resistance evolution. The understanding gained will aid prediction of the evolutionary responses of pests and vectors to attack, which will inform our understanding of biocontrol and disease transmission by mosquitoes and other vectors.
所有动植物都会受到天敌——病原体、寄生虫和捕食者——的攻击,由此产生的死亡率和发病率推动了生态和进化的变化。事实上,许多动物生物学是由自然选择驱动的,以避免或减轻天敌攻击的影响,其形式是在体表防御以击退入侵者,并在内部防御以清除攻击者或减少造成的损害。最常见的是,我们认为防御系统是在动物基因组中编码的。自然选择会产生基因变异,当攻击常见时,这些基因变异会增加抵抗力,而在没有攻击的情况下,如果代价高昂,抵抗力就会下降。然而,最近的研究发现,生活在动物体内的共生细菌也可以提供针对攻击的保护。在昆虫中,这些保护性共生体通常从母亲传给后代,因此它们的行为类似于遗传特征。攻击者的存在意味着携带共生体的个体会留下更多的后代,因此自然选择会增加共生体的频率。动物种群可以通过基因组的变化和共生体的传播来进化出对攻击的抵抗力,这一发现提出了基本的进化问题。然而,由于这两个过程是孤立研究的,我们对它们如何相互作用和不同之处知之甚少。为了解决我们知识上的这一空白,我们建议研究基因和保护性共生体如何促进实验室果蝇种群对寄生黄蜂的抵抗力的进化。我们的首要目标是了解不同的保护模式如何在个人和人群中相互作用。如果两种类型的变异都存在,是否会进化出更强的抵抗力?环境因素,如温度和食物压力,对不同的抵抗模式有非常不同的影响。因此,我们将测试环境是否决定了哪种抵抗模式的进化。然后,我们将检查共生体防御的两个方面,使它们与基因组内的防御不同,并确定它们如何影响防御的进化。第一个区别是,保护性共生体通常会对宿主产生多种影响——除了保护之外,它们还可以提供营养益处,改变耐热性,并有利于生育女儿而不是儿子。正是这些特征的组合推动了共生体在种群内传播,因此多重效应可能有利于共生体对基因组中基因的保护性防御。我们将通过研究性别比例扭曲如何在抗性进化过程中改变基因和共生体之间的平衡来检验这一假设。第二个区别是保护性共生体介导的防御是一种不寻常的特征。它不是简单地“关闭”或“打开”,而是效率取决于存在的细菌数量,就像军队在包含更多士兵时效率更高一样。共生体的数量(“滴度”)可能会受到环境的影响,而且重要的是,可以在代际间传播。拥有大量细菌且防御能力良好的雌性所生的女儿也同样拥有大量细菌且防御能力良好。这种不寻常的排列意味着自然选择可能会影响细菌的数量。因此,我们的最终目标是研究共生体滴度及其对寄生虫攻击的进化反应的影响程度。自然选择对滴度有影响吗?这些影响会持续几代人吗?这个过程是否会密切跟踪对寄生虫威胁水平的抵抗力?这项研究将首次研究这两种防御模式的存在如何影响抵抗力的演变。所获得的了解将有助于预测害虫和媒介对攻击的进化反应,这将有助于我们了解蚊子和其他媒介的生物防治和疾病传播。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
History matters: Thermal environment before but not during wasp attack determines the efficiency of symbiont-mediated protection.
历史很重要:黄蜂攻击之前而非期间的热环境决定了共生体介导的保护的效率。
- DOI:http://dx.10.1111/mec.16935
- 发表时间:2023
- 期刊:
- 影响因子:4.9
- 作者:Jones JE
- 通讯作者:Jones JE
History matters: thermal environment before, but not during wasp attack determines the efficiency of symbiont-mediated protection
历史很重要:黄蜂攻击之前而非期间的热环境决定了共生体介导的保护的效率
- DOI:http://dx.10.1101/2022.09.30.510345
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jones J
- 通讯作者:Jones J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Hurst其他文献
Gregory Hurst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Hurst', 18)}}的其他基金
Does Spiroplasma protect against trypanosome infection in Drosophila?
螺原体是否能保护果蝇免受锥虫感染?
- 批准号:
NE/V009834/1 - 财政年份:2021
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Establishing the genetic basis of symbiosis in an insect host
建立昆虫宿主共生的遗传基础
- 批准号:
BB/S017534/1 - 财政年份:2019
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Genetics and evolutionary dynamics of male-killer suppression in the lacewing, Mallada desjardinsi
草蛉雄性杀手抑制的遗传学和进化动力学,Mallada desjardinsi
- 批准号:
NE/S012346/1 - 财政年份:2019
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Evaluating the safety and nutritional quality of a novel insect based food product in Benin
评估贝宁新型昆虫食品的安全性和营养品质
- 批准号:
BB/P022545/1 - 财政年份:2017
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
How do sex ratio distorting symbionts affect the evolution of their host?
性别比例扭曲的共生体如何影响宿主的进化?
- 批准号:
NE/N010434/1 - 财政年份:2016
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Polyandry and sex ratio drive
一妻多夫制和性别比例驱动
- 批准号:
NE/I025905/1 - 财政年份:2012
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Beyond the Red Queen: are elevated parasite evolutionary rates driven by host shifts?
除了红皇后之外:寄生虫进化率的升高是由宿主变化驱动的吗?
- 批准号:
NE/I01067X/1 - 财政年份:2011
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Temperature impacts on parasite epidemiology - case study of a contact-transmitted insect parasite
温度对寄生虫流行病学的影响——接触传播昆虫寄生虫的案例研究
- 批准号:
NE/G003246/1 - 财政年份:2009
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Comparative genomics of Arsenophonus, a bacterial symbiont of arthropods
节肢动物细菌共生体 Arsenophonus 的比较基因组学
- 批准号:
NE/F010974/1 - 财政年份:2008
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
Selfish genetic elements and population viability: the impact of temperature and sexual selection
自私的遗传因素和种群生存能力:温度和性选择的影响
- 批准号:
NE/F005245/1 - 财政年份:2008
- 资助金额:
$ 82.68万 - 项目类别:
Research Grant
相似国自然基金
基于多组学数据整合分析挖掘华南籼稻外观品质基因及数据库构建
- 批准号:32300549
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学整合解析系统性红斑狼疮发展的关键基因
- 批准号:32300534
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于元共祖理论整合猪纯种和三元杂交后代生产性能的基因组选择新方法研究
- 批准号:32372840
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多组学整合分析构建血流切应力调节内皮吞噬的基因调控网络
- 批准号:12302406
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏族强选择性基因结构变异TED通过HIF-1α/-2α switch应答急慢性缺氧整合调控氧稳态的机制研究
- 批准号:32371209
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Integrating Genomic Risk Assessment for Chronic Disease Management in a Diverse Population
整合基因组风险评估以进行不同人群的慢性病管理
- 批准号:
10852376 - 财政年份:2023
- 资助金额:
$ 82.68万 - 项目类别:
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 82.68万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 82.68万 - 项目类别:
Uncovering colorectal cancer etiology and biology by integrating proteomics with other omics data
通过将蛋白质组学与其他组学数据相结合,揭示结直肠癌的病因学和生物学
- 批准号:
10585424 - 财政年份:2023
- 资助金额:
$ 82.68万 - 项目类别:
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 82.68万 - 项目类别: