Horizontal gene transfer of cyanobacterial carbon fixing machinery: Implications for the rise of modern atmospheric oxygen

蓝藻固碳机制的水平基因转移:对现代大气氧气上升的影响

基本信息

  • 批准号:
    NE/Z00019X/1
  • 负责人:
  • 金额:
    $ 112.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Much of life on Earth relies on oxygen for aerobic respiration. Indeed, it is thought that mammalian reproductive systems cannot operate at oxygen concentrations much lower than today's 21%. It is therefore vitally important that we understand how oxygen is generated, maintained and consumed. The cycling of oxygen is just one of numerous 'redox-coupled' biogeochemical cycles, whereby the majority of transformations are carried out by biology. For instance, our primordial Earth completely lacked free oxygen, until the evolution of photosynthesis freed it from water more than two billion years ago. The subsequent rise of oxygen concentrations until today has been crucial for the evolution of complex life forms. Yet, this rise has been far from linear. Indeed, for most of Earth's history, oxygen concentration remained at less than one percent of today's value, with geochemical proxies suggesting large and rapid fluctuations in atmospheric oxygen roughly 600 million years ago. It is important that we establish what events catalyse these swings, to predict future habitability. Over geological timescales, oxygen concentration is controlled by three factors: 1) The amount of primary production of the biosphere, 2) The global balance of photosynthesis to aerobic respiration and 3) The rate of burial of carbon-rich organic matter into mostly marine sediments. Roughly 25% of present primary production is carried out by one group of microorganisms, marine cyanobacteria. This group represent the most numerically abundant photosynthetic organisms on Earth. They evolved roughly 650 million years ago, narrowly pre-dating a rapid rise in oxygen concentration, suggesting their distinct physiology could have driven this rise. However, we have no understanding of how this group became so abundant in the marine environment. We recently identified a genetic change that is unique to this group that controls an important aspect of photosynthesis. This genetic change involves cellular machinery, called the carboxysome, which allows carbon fixation to function efficiently. This group of cyanobacteria acquired their carboxysome from distantly related bacteria and it has subsequently been passed to all descendants. Here, we propose that this unique genetic change allows photosynthesis to better operate when nutrients are limiting. We call this the oligotrophy hypothesis. If this genetic change would have allowed these organisms to adapt to oligotrophy, this would have promoted their rapid expansion into the vast Neoproterozoic oceans, which were otherwise devoid of primary producers. The result would have been a large increase in planetary primary productivity and increase in atmospheric oxygen. By combining interdisciplinary approaches, we will test this exciting hypothesis . We will combine 'genetic transplants' of carboxysome genes and cellular modelling to understand their underlying effect on cell physiology. We will use field work to experimentally test selection of trophic status on carboxysome type. We will then integrate this data with evolutionary scenarios of cyanobacteria into geochemical models of the Neoproterozoic oceans to understand if this mechanism could plausibly explain the rise in oxygen supporting complex life. Our findings will have important implications for our understanding of the habitability of life on Earth and the existence of complex life beyond our planet.
地球上的大部分生命都依赖氧气进行有氧呼吸。事实上,人们认为哺乳动物的生殖系统无法在远低于当今 21% 的氧气浓度下运行。因此,了解氧气是如何产生、维持和消耗的至关重要。氧循环只是众多“氧化还原耦合”生物地球化学循环之一,其中大部分转化是由生物学进行的。例如,我们的原始地球完全缺乏游离氧,直到二十亿多年前光合作用的进化使其脱离了水。直到今天,随后氧气浓度的上升对于复杂生命形式的进化至关重要。然而,这种增长远不是线性的。事实上,在地球历史的大部分时间里,氧气浓度一直保持在不到当今值的百分之一,地球化学指标表明,大约 6 亿年前,大气中的氧气发生了巨大而快速的波动。重要的是,我们要确定哪些事件会催化这些波动,以预测未来的宜居性。在地质时间尺度上,氧气浓度受三个因素控制:1)生物圈的初级生产力,2)光合作用与有氧呼吸的全球平衡,3)富含碳的有机物埋入海洋沉积物中的速率。目前大约 25% 的初级生产是由一组微生物(海洋蓝细菌)完成的。该群体代表了地球上数量最多的光合生物。它们在大约 6.5 亿年前进化,几乎早于氧气浓度的快速上升,这表明它们独特的生理机能可能推动了这种上升。然而,我们不知道这个群体如何在海洋环境中变得如此丰富。我们最近发现了该群体特有的一种基因变化,它控制着光合作用的一个重要方面。这种基因变化涉及称为羧基体的细胞机制,它可以使碳固定有效发挥作用。这组蓝藻从远缘细菌那里获得了羧基体,随后被传递给所有后代。在这里,我们提出,这种独特的基因变化可以使光合作用在营养物质有限时更好地发挥作用。我们称之为寡营养假说。如果这种基因变化使这些生物体能够适应寡营养,这将促进它们迅速扩张到广阔的新元古代海洋,否则这些海洋就缺乏初级生产者。其结果将是行星初级生产力的大幅提高和大气中氧气的增加。通过结合跨学科的方法,我们将测试这个令人兴奋的假设。我们将结合羧基体基因的“基因移植”和细胞建模来了解它们对细胞生理学的潜在影响。我们将利用实地工作来实验测试羧基体类型营养状态的选择。然后,我们将这些数据与蓝细菌的进化情景整合到新元古代海洋的地球化学模型中,以了解这种机制是否可以合理地解释支持复杂生命的氧气的增加。我们的发现将对我们理解地球上生命的宜居性以及地球以外复杂生命的存在产生重要影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Puxty其他文献

Richard Puxty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水平转移基因VmHGT4介导苹果黑腐皮壳偏好性侵染苹果的机理
  • 批准号:
    32372504
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
水平基因转移对蓝细菌基因组演化及生态适应性的影响
  • 批准号:
    32370009
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可溶态生物炭对抗生素抗性基因在水土环境中迁移与水平转移的影响及机制
  • 批准号:
    42307468
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
电过滤消毒对污水中耐药基因水平转移的影响机制及其风险控制原理
  • 批准号:
    52370207
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
典型非抗生素类药物对活性污泥多质粒介导下抗生素抗性基因水平转移的影响机制研究
  • 批准号:
    42307529
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF PRFB FY23: Understanding the evolutionary importance and vectoring mechanisms of horizontal gene transfer within a parasitic plant system
NSF PRFB FY23:了解寄生植物系统内水平基因转移的进化重要性和矢量机制
  • 批准号:
    2305877
  • 财政年份:
    2024
  • 资助金额:
    $ 112.79万
  • 项目类别:
    Fellowship Award
CAREER: Elucidating trans-kingdom horizontal gene transfer mechanisms to improve plant genetic engineering
职业:阐明跨界水平基因转移机制以改进植物基因工程
  • 批准号:
    2340175
  • 财政年份:
    2024
  • 资助金额:
    $ 112.79万
  • 项目类别:
    Continuing Grant
An RNA vaccines systems approach to Group A streptococcus vaccine discovery
发现 A 组链球菌疫苗的 RNA 疫苗系统方法
  • 批准号:
    10577082
  • 财政年份:
    2023
  • 资助金额:
    $ 112.79万
  • 项目类别:
ELAVL1 role in glioblastoma heterogeneity through intercellular gene transfer mediated by cell fusion and tunneling membrane nanotube formation
ELAVL1通过细胞融合和隧道膜纳米管形成介导的细胞间基因转移在胶质母细胞瘤异质性中的作用
  • 批准号:
    10658226
  • 财政年份:
    2023
  • 资助金额:
    $ 112.79万
  • 项目类别:
Single-cell transcriptomics of complex bacterial communities
复杂细菌群落的单细胞转录组学
  • 批准号:
    10714260
  • 财政年份:
    2023
  • 资助金额:
    $ 112.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了