Past methane from lakes in Alaska: integrating proxy records and models

阿拉斯加湖泊过去的甲烷:整合代理记录和模型

基本信息

  • 批准号:
    NE/T007109/1
  • 负责人:
  • 金额:
    $ 66.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Increasing concentrations of greenhouse gases in the atmosphere trap heat and cause global warming. Methane is key, as it is 28 times more potent than carbon dioxide in trapping heat. Unfortunately, there is great uncertainty in how the amount of methane in the atmosphere will change under future conditions, so we urgently need more accurate numbers for future methane emissions as the Earth continues to warm. This proposal will make a radical new contribution by providing much better constrained estimates of methane contributions from lakes in Alaska, as an example of a high-latitude region susceptible to global warming. The high northern latitudes are particularly important to climate change effects because climatic warming is accentuated toward the poles, which will accelerate biological processing of carbon, including the production of methane.The uncertainty in future atmospheric methane content reflects the fact that emissions are caused by human actions and natural processes that are themselves affected by climate change. Lakes form one of the largest natural sources of methane. Lake methane production strongly increases in warmer and wetter conditions, leading to more methane entering the atmosphere, where it contributes to further warming. This is an important positive feedback mechanism that could have large impacts on future global climate. This climate-methane feedback is strongest at high latitudes, where lakes are very abundant and recent warming is most severe. However, because temperature is only one of several factors that are likely to affect methane release from lakes and wetlands, the extent of the methane feedback can only be understood through careful numerical modelling.In the past, warmer-than-present climatic conditions prevailed in interior Alaska between 11,000-6,000 years ago. If we can understand how methane behaved under these conditions, we will be in a better position to anticipate future change. We can do this by deriving data directly from lake sediment records coupled with a model to simulate the processes of methane generation and emission. Comparison of model output and observed data forms a powerful hypothesis-testing system that we can use to ascertain how much methane emissions have changed in the past, and why they changed. This study's observed record comes from dated lake sediments. Lake sediments accumulate continuously and preserve records of chemical and biological processes plus information about past climate. Studying these records will allow us to reconstruct information on past methane emissions. Key factors for methane emissions (temperature, water level, organic matter availability, oxygen regime) will also be reconstructed and modelled, which allows us to understand the processes behind lake methane emissions.Our study focuses on lakes in Alaska because this region is well-studied compared with other high-latitude areas, with extensive background information about past climate and carbon cycling. We will reconstruct methane emissions from lakes that were 2-5 degrees warmer 11,000-6,000 years ago, compared with today. We will use a new, quantitative tool for estimating past methane emissions from lakes based on the chemical composition of fossils in sediment records. We will also adapt an existing numerical model that simulates present-day methane emissions to estimate past and future methane emissions. Our integrated approach, combining geochemical measurements and modelling, will allow us to: (1) assess the magnitude of methane emissions through time, (2) identify the key factors driving methane emissions, (3) find critical values for these factors that lead to change, and (4) understand how factors interact to produce observed methane emissions. Our numerical methane model, refined through comparison with empirical observations, will then allow us to make robust estimates for how much greater a contribution lakes may have to atmospheric methane in the future.
大气中温室气体浓度的增加会吸收热量并导致全球变暖。甲烷是关键,因为它的吸热能力是二氧化碳的 28 倍。不幸的是,在未来条件下,大气中的甲烷含量将如何变化存在很大的不确定性,因此,随着地球持续变暖,我们迫切需要更准确的未来甲烷排放数据。作为易受全球变暖影响的高纬度地区的一个例子,该提案将对阿拉斯加湖泊的甲烷贡献提供更好的限制性估计,从而做出全新的贡献。北方高纬度地区对气候变化的影响尤为重要,因为气候变暖向两极加剧,这将加速碳的生物处理,包括甲烷的产生。未来大气甲烷含量的不确定性反映了排放是由人类造成的这一事实本身受气候变化影响的行动和自然过程。湖泊是最大的甲烷天然来源之一。在温暖和潮湿的条件下,湖泊甲烷的产量急剧增加,导致更多的甲烷进入大气,从而导致进一步变暖。这是一种重要的正反馈机制,可能对未来全球气候产生重大影响。这种气候-甲烷反馈在高纬度地区最为强烈,那里的湖泊非常丰富,而且最近的变暖最为严重。然而,由于温度只是可能影响湖泊和湿地甲烷释放的几个因素之一,因此甲烷反馈的程度只能通过仔细的数值模拟来了解。过去,气候条件比现在温暖。 11,000-6,000 年前的阿拉斯加内陆地区。如果我们能够了解甲烷在这些条件下的表现,我们将能够更好地预测未来的变化。我们可以通过直接从湖泊沉积物记录中获取数据并结合模拟甲烷产生和排放过程的模型来做到这一点。模型输出和观测数据的比较形成了一个强大的假设检验系统,我们可以用它来确定过去甲烷排放量发生了多少变化以及变化的原因。这项研究的观测记录来自古老的湖泊沉积物。湖泊沉积物不断积累并保存化学和生物过程的记录以及有关过去气候的信息。研究这些记录将使我们能够重建有关过去甲烷排放的信息。甲烷排放的关键因素(温度、水位、有机物可用性、氧状态)也将被重建和建模,这使我们能够了解湖泊甲烷排放背后的过程。我们的研究重点是阿拉斯加的湖泊,因为该地区与其他高纬度地区进行了比较,并提供了有关过去气候和碳循环的广泛背景信息。我们将重建 11,000-6,000 年前湖泊的甲烷排放量,与今天相比,这些湖泊的温度升高了 2-5 度。我们将使用一种新的定量工具,根据沉积物记录中化石的化学成分来估算过去湖泊的甲烷排放量。我们还将采用模拟当前甲烷排放量的现有数值模型来估计过去和未来的甲烷排放量。我们的综合方法结合了地球化学测量和建模,使我们能够:(1)评估随时间变化的甲烷排放量,(2)确定驱动甲烷排放的关键因素,(3)找到导致甲烷排放的这些因素的临界值(4) 了解因素如何相互作用以产生观测到的甲烷排放。我们的甲烷数值模型通过与经验观测进行比较而得到完善,使我们能够对未来湖泊对大气甲烷的贡献做出可靠的估计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maarten Van Hardenbroek其他文献

Maarten Van Hardenbroek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maarten Van Hardenbroek', 18)}}的其他基金

NI: Developing Innovative Multi-proxy Analysis for Long-term environmental change in Siberia and the Russian Far East
NI:针对西伯利亚和俄罗斯远东地区的长期环境变化开发创新的多代理分析
  • 批准号:
    NE/S008276/1
  • 财政年份:
    2018
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Research Grant

相似国自然基金

白垩纪OAE1a时期湖泊微生物甲烷代谢过程及其环境效应
  • 批准号:
    42302345
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
湖泊有氧水层产甲烷微生物分布格局、代谢途径及调控机制
  • 批准号:
    42371065
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
湖泊浮毯沼泽化进程中无机-有机电子受体转变及其对甲烷排放影响机制
  • 批准号:
    42271129
  • 批准年份:
    2022
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
富铁湖泊厌氧沉积物中好氧甲烷氧化菌的生存机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
浅水湖泊反硝化型甲烷厌氧氧化作用及其对氮污染响应规律研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding impacts of microbial methane ebullition in oil sands pit lakes: methane release and transport of petroleum hydrocarbons
了解油砂坑湖中微生物甲烷沸腾的影响:甲烷释放和石油碳氢化合物的运输
  • 批准号:
    571299-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Alliance Grants
Understanding impacts of microbial methane ebullition in oil sands pit lakes: methane release and transport of petroleum hydrocarbons
了解油砂坑湖中微生物甲烷沸腾的影响:甲烷释放和石油碳氢化合物的运输
  • 批准号:
    571299-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Alliance Grants
NSF Postdoctoral Fellowship in Biology FY 2021: Integrating microbial dynamics into methane models for northern peatland and post-glacial lakes
2021 财年 NSF 生物学博士后奖学金:将微生物动力学整合到北部泥炭地和冰河后湖泊的甲烷模型中
  • 批准号:
    2109429
  • 财政年份:
    2022
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Fellowship Award
Collaborative Research: Influence of phosphorus deficiency on enigmatic biological methane production in oxic freshwater lakes
合作研究:缺磷对含氧淡水湖神秘生物甲烷生产的影响
  • 批准号:
    1950963
  • 财政年份:
    2020
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Influence of phosphorus deficiency on enigmatic biological methane production in oxic freshwater lakes
合作研究:缺磷对含氧淡水湖神秘生物甲烷生产的影响
  • 批准号:
    1951002
  • 财政年份:
    2020
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了