Scientific and technological innovation from mineral geonomics - a dual source microfocus single-crystal diffractometer for UK geoscience

来自矿物地质学的科技创新——英国地球科学双源微焦点单晶衍射仪

基本信息

  • 批准号:
    NE/X005992/1
  • 负责人:
  • 金额:
    $ 85.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Minerals are critically involved in all global processes, including deep earth tectonics and geohazards, dynamic environmental changes at the Earth's surface, and forming the fundamental skeletal structures of many of Earth's organisms. Since the early 20th century, crystallographers have studied and classified the crystal structures of minerals and used this information to further our understanding of geodiversity, the geological evolution of Earth and the exploitation of minerals as critical resources for developing societies. However, as our knowledge of the mineral kingdom developed and society's understanding of the global human impact has improved, so the need to study more complex and challenging materials has become increasingly urgent. Unfortunately, such minerals from unique natural environments including, diverse biogeochemical systems, legacy mining / industrial sites, modern waste management and recycling systems, fossils, plants and animals, and extremes of temperatures, pressure and stresses, have to-date proven too challenging to be structurally characterised at the atomic scale.The main properties that make them so challenging to study include their extremely small size, chemical complexity and heavy atom/light atom combinations, huge topological units (large repeating patterns), or limited stability/crystallinity. These previously insurmountable technical challenges can now be addressed, due to major advances in hardware and software relating to X-ray crystallography methods in the past 5 years that now allow innovative structural science on these minerals linking nano-scale phenomena with large-scale geological processes - a fundamental goal of geoscience. The instrument proposed here is a unique single-crystal X-ray diffractometer equipped dual Ag/Mo (silver and molybdenum) high-flux X-ray micro-source and Cd-Te (cadmium-tellurium) area detector. The dual source allows us to change the X-ray wavelength to optimise the experiment, for example when using high pressure equipment (known as diamond anvil cells, DAC) much of the diffraction data are shielded by the DACs when using a Mo X-ray source. This problem is alleviated by using an Ag X-ray source and consequently a more complete data set with high numbers of diffraction peaks can be collected. Traditional silicon detectors are reasonably efficient for Mo X-rays, but their efficiency plummets when using shorter wavelength X-rays such as from an Ag X-ray source. Newly developed Cd-Te detectors maintain their efficiency at long and short wavelengths allowing us to conveniently change X-ray source without any loss in counting statistics. Finally, microfocus X-ray sources have a much higher flux and longer lifespan when compared to traditional X-ray sources.This new diffractometer will expand our knowledge of mineral geodiversity, enhancing national and international collections and databases. We will be able to study minerals from the Earth's deep interior under realistic pressure and temperature conditions or as tiny inclusions from mantle diamonds, allowing us to refine our models of Earths structure, composition and dynamics. Furthermore, understanding the fundamental atomic scale structures of challenging minerals provides critical data for models of metal cycling, ore-forming systems, nutrient transport and toxicity/remediation. Such information is held within microscale neo-forming phases at the mineral:water interface, often mediated by microbial communities utilising minerals for energy whilst co-precipitating new phases. Solving the structures of minerals with technological potential or minerals hosting technology enabling elements will enhance the link between geometallurgy, mineral engineering and functional materials driving the technological exploitation of minerals utilising sustainable, low energy, low waste technology.
矿物质在所有全球过程中发挥着至关重要的作用,包括地球深层构造和地质灾害、地球表面的动态环境变化以及形成许多地球生物体的基本骨骼结构。自 20 世纪初以来,晶体学家对矿物的晶体结构进行了研究和分类,并利用这些信息来进一步了解地球多样性、地球的地质演化以及作为发展中国家重要资源的矿物的开采。然而,随着我们对矿物王国的了解不断发展,社会对全球人类影响的理解不断提高,因此研究更复杂和更具挑战性的材料的需求变得越来越迫切。不幸的是,这些来自独特自然环境的矿物,包括不同的生物地球化学系统、遗留采矿/工业场地、现代废物管理和回收系统、化石、植物和动物,以及极端的温度、压力和压力,迄今为止已被证明太具有挑战性。使其研究起来如此具有挑战性的主要特性包括其极小的尺寸、化学复杂性和重原子/轻原子组合、巨大的拓扑单元(大的重复图案)或有限的稳定性/结晶度。由于过去五年中与 X 射线晶体学方法相关的硬件和软件方面取得了重大进展,这些以前难以克服的技术挑战现在可以得到解决,现在可以对这些矿物进行创新结构科学,将纳米级现象与大规模地质过程联系起来- 地球科学的基本目标。这里提出的仪器是一种独特的单晶 X 射线衍射仪,配备双 Ag/Mo(银和钼)高通量 X 射线微源和 Cd-Te(镉-碲)面探测器。双源允许我们改变 X 射线波长来优化实验,例如,当使用高压设备(称为金刚石砧室,DAC)时,使用 Mo X 射线时,许多衍射数据会被 DAC 屏蔽来源。通过使用 Ag X 射线源可以缓解这个问题,因此可以收集具有大量衍射峰的更完整的数据集。传统的硅探测器对于 Mo X 射线相当有效,但当使用较短波长的 X 射线(例如来自 Ag X 射线源)时,其效率会急剧下降。新开发的 Cd-Te 探测器在长波长和短波长下均保持其效率,使我们能够方便地更换 X 射线源,而不会损失计数统计数据。最后,与传统 X 射线源相比,微焦点 X 射线源具有更高的通量和更长的使用寿命。这种新型衍射仪将扩展我们对矿物地质多样性的了解,增强国家和国际收藏和数据库。我们将能够在现实的压力和温度条件下研究来自地球内部深处的矿物,或者研究地幔钻石中的微小包裹体,从而使我们能够完善地球结构、成分和动力学模型。此外,了解具有挑战性的矿物的基本原子尺度结构为金属循环、成矿系统、养分运输和毒性/修复模型提供了关键数据。这些信息保存在矿物:水界面的微型新形成相中,通常由微生物群落介导,利用矿物作为能量,同时共沉淀新相。解决具有技术潜力的矿物结构或矿物承载技术使能元素将增强地冶金、矿物工程和功能材料之间的联系,推动利用可持续、低能耗、低废物技术的矿物技术开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Schofield其他文献

Practice paper
练习纸
  • DOI:
    10.1201/9780429091360-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Schofield;Paul Schofield
  • 通讯作者:
    Paul Schofield

Paul Schofield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

创业拼凑的动态过程机制研究:基于社会性重组和技术性重组的视角
  • 批准号:
    72372036
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
技术性贸易壁垒如何影响了国际贸易流量?基于新新贸易理论的实证研究
  • 批准号:
    71273161
  • 批准年份:
    2012
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
技术性贸易壁垒的度量、影响及政策干预研究
  • 批准号:
    71203142
  • 批准年份:
    2012
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

56th Annual Meeting of the Society for Leukocyte Biology
白细胞生物学学会第 56 届年会
  • 批准号:
    10752090
  • 财政年份:
    2023
  • 资助金额:
    $ 85.53万
  • 项目类别:
Washington University Chronic KidneyDisease National Resource Center
华盛顿大学慢性肾病国家资源中心
  • 批准号:
    10747719
  • 财政年份:
    2023
  • 资助金额:
    $ 85.53万
  • 项目类别:
Comprehensive research on the relationship between scientific and technological innovation and human society with a focus on the philosophy of technology
以技术哲学为重点的科技创新与人类社会关系的综合研究
  • 批准号:
    23K00017
  • 财政年份:
    2023
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decoding hyperexcitability in malignant glioma
解码恶性神经胶质瘤的过度兴奋
  • 批准号:
    10529810
  • 财政年份:
    2022
  • 资助金额:
    $ 85.53万
  • 项目类别:
SISTEMAS: Stimulating Immersive Science Through Engaging Motivating and Authentic Scenarios
SISTEMAS:通过引人入胜且真实的场景激发沉浸式科学
  • 批准号:
    10450225
  • 财政年份:
    2022
  • 资助金额:
    $ 85.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了