LiFT - Lithium for Future Technology

LiFT - 未来技术的锂

基本信息

  • 批准号:
    NE/V007009/1
  • 负责人:
  • 金额:
    $ 62.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Along with many other countries worldwide, the UK is committed to achieving a low carbon economy. There is a plan to achieve net zero carbon dioxide emissions by 2050, with a key component of this plan being a ban on the sale of new petrol and diesel cars by 2035, and a switch to electric vehicles. These vehicles will require storage batteries that contain many components made of metals that have limited supplies. For example, a recent open letter authored by Professor Richard Herrington (principal investigator for the NHM on this proposal) explained that if the UK is to meet its electric car targets, it will require three quarters of the world's current total annual production of lithium - an essential component of modern electric vehicle batteries. Whilst current rates of lithium production are sufficient to meet global demand, we need to investigate additional lithium resources if we are to meet greenhouse gas emission targets. This proposal seeks to better understand the Earth system processes that concentrate lithium into mineral deposits, from which lithium can be mined in both an economically feasible and an environmentally responsible manner. Our central hypothesis is that major lithium deposits are largely formed in parts of the world where continental collision occurs as a consequence of plate tectonics.We will further test the hypothesis that within these collisional environments there is a "life-cycle" of tectonic processes that is reflected in the formation of different types of lithium deposits. Broadly speaking, in the first stage lithium is moderately concentrated in igneous rocks that are formed in this setting. Lithium is a relatively soluble element, which is readily leached and weathered from these rocks (particularly by hot geothermal water) and the lithium-rich waters may accumulate in basins that are also formed during continental collision. If the climate is arid, the waters evaporate to form a lithium-rich brine that can be an economically viable lithium deposit in its own right. In these brine basins, complex chemical processes and extreme microbial life may play a role in cycling elements and concentrating the lithium into sediments. Over time, the geothermal and volcanic activity ceases and the lithium-rich sediments may be buried and thus preserved for millions of years. Subsequently, these buried rocks may also serve as a source of lithium that can be extracted. With further burial and then heating, these lithium-rich sediments can reach temperatures at which they undergo melting and the formation of lithium-enriched pegmatites and granites. Again, these rocks may contain sufficient concentrations and amounts of lithium to represent a source of lithium that can be extracted for ultimate incorporation in electric vehicle batteries.At each stage of the life-cycle there are uncertainties regarding the source of lithium, and how it is transported and trapped. The different types of lithium deposits also vary in how easy it is to extract the lithium, and we need to consider how to do this in an environmentally responsible way. We will tackle these problems by bringing together a group of scientists who have considerable expertise in all aspects of this lithium journey. We will use a wide range of techniques, from simple geological observations through to highly sophisticated isotopic analyses and microbiological techniques, to track the behaviour of lithium. We will work alongside industry partners to identify the types of deposits that can be profitably extracted while simultaneously minimising any damage to the environment, and we will investigate the potential for more sustainable methods of lithium extraction using microbial processes. We anticipate that our research will provide industry with new targets for exploration for lithium resources. This will not only help secure a low carbon economy for the UK, but also provide important economic benefits to the UK and other nations.
与全球许多其他国家一起,英国致力于实现低碳经济。有一个计划到2050年之前实现零二氧化碳排放量,该计划的关键组成部分是在2035年禁止出售新的汽油和柴油汽车,并转向电动汽车。这些车辆将需要储存电池,这些电池包含许多由供应有限的金属制成的组件。例如,由理查德·赫灵顿(Richard Herrington)教授(NHM的首席研究员根据该提案)撰写的一封公开信解释说,如果英国要实现其电动汽车目标,它将需要世界当前年度锂年度生产的四分之三 - 现代电动汽车电池的重要组成部分。虽然目前的锂产量率足以满足全球需求,但如果要满足温室气体排放目标,我们需要调查额外的锂资源。该提案旨在更好地了解将锂集中在矿藏中的地球系统过程,从而以经济可行的和环境负责的方式可以从中开采锂。我们的中心假设是,主要的锂沉积物主要在世界各地形成,在世界各地发生大陆碰撞是由于板块构造而发生的。我们将进一步检验以下假设:在这些碰撞环境中,在这些岩石沉积的不同类型的岩石沉积物形成中会概述的构造过程的“生命周期”。从广义上讲,在第一阶段,锂在这种情况下形成的火成岩中适度集中在火成岩中。锂是一种相对可溶的元素,很容易从这些岩石中浸出并风化(尤其是由热的地热水),并且富含锂的水可能会积聚在大陆碰撞期间也形成的盆地中。如果气候是干旱的,那么水域会蒸发以形成富含锂的盐水,这本身就是一种经济上可行的锂沉积物。在这些盐水盆地中,复杂的化学过程和极端微生物寿命可能在循环元素中起作用,并将锂集中在沉积物中。随着时间的流逝,地热和火山活动停止以及富含锂的沉积物可以被埋葬,从而保存了数百万年。随后,这些被埋葬的岩石也可以用作可以提取的锂来源。通过进一步的埋葬,然后加热,这些富含锂的沉积物可以达到经历熔化的温度,并形成富含锂的pegmatites和花岗岩的温度。同样,这些岩石可能含有足够的浓度和含锂的量,代表可以在电池中提取的锂来源。不同类型的锂沉积物在提取锂的容易方面也有所不同,我们需要考虑如何以环境负责的方式进行此操作。我们将通过将一群在锂旅程的各个方面具有丰富专业知识的科学家组合在一起来解决这些问题。从简单的地质观察到高度复杂的同位素分析和微生物技术,我们将使用广泛的技术来跟踪锂的行为。我们将与行业合作伙伴一起合作,以同时最大程度地减少对环境的任何损害,并同时研究可以获利提取的存款类型,我们将研究使用微生物过程的更可持续的锂提取方法。我们预计我们的研究将为行业提供锂资源探索的新目标。这不仅将有助于确保英国的低碳经济,而且为英国和其他国家提供重要的经济利益。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health.
  • DOI:
    10.1029/2020gh000380
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Newsome L;Falagán C
  • 通讯作者:
    Falagán C
Evolution of Sulfidic Legacy Mine Tailings: A Review of the Wheal Maid Site, UK
硫化物遗留尾矿的演变:英国 Wheal Maid 遗址回顾
  • DOI:
    10.3390/min12070848
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Fitch V
  • 通讯作者:
    Fitch V
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Hudson-Edwards其他文献

Experimental investigation of mechanical characteristics of coal samples at different drying temperatures
不同干燥温度下煤样力学特性的实验研究
  • DOI:
    10.1080/07373937.2022.2060999
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Chuangkai Zheng;Qiangling Yao;Xuehua Li;Karen Hudson-Edwards;Changhao Shan;Xiaobei Shang;Yong Li
  • 通讯作者:
    Yong Li

Karen Hudson-Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Hudson-Edwards', 18)}}的其他基金

Legacy wastes in the coastal zone: Environmental risks and management futures
沿海地区的遗留废物:环境风险和管理前景
  • 批准号:
    NE/T002824/1
  • 财政年份:
    2020
  • 资助金额:
    $ 62.15万
  • 项目类别:
    Research Grant
Development of the Tripuhyite Technology for Remediating Antimony-Contaminated Waters and Recovering Antimony
三磷矿修复锑污染水体及回收锑技术的开发
  • 批准号:
    NE/P003095/1
  • 财政年份:
    2016
  • 资助金额:
    $ 62.15万
  • 项目类别:
    Research Grant
The environmental impact of the Mount Polley mine tailings spill and related clean-up operations, British Columbia, Canada
加拿大不列颠哥伦比亚省波利山矿尾矿泄漏及相关清理作业对环境的影响
  • 批准号:
    NE/M017486/1
  • 财政年份:
    2014
  • 资助金额:
    $ 62.15万
  • 项目类别:
    Research Grant
Characterisation of Antimony-bearing Scorodite for Remediation of Toxic Mine Waste
用于修复有毒矿山废物的含锑臭葱石的表征
  • 批准号:
    NE/J01303X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 62.15万
  • 项目类别:
    Research Grant
Efficiences and Mechanisms of Arsenic (As) Uptake from Aqueous Solution by Vivianite
Vivianite 从水溶液中吸收砷 (As) 的效率和机制
  • 批准号:
    NE/E007716/1
  • 财政年份:
    2007
  • 资助金额:
    $ 62.15万
  • 项目类别:
    Research Grant

相似国自然基金

基于一维线性结构的氟化电解质设计及在固态高压锂金属电池中的性能研究
  • 批准号:
    52302083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于褐煤的氮掺杂类石墨烯/Sn的构建与储锂机制研究
  • 批准号:
    22308371
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锂空气电池解耦电化学反应与固体产物存储的电极设计及关键传质问题研究
  • 批准号:
    52376080
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于稀土离子掺杂铌酸锂薄膜的涡旋激光产生及调控
  • 批准号:
    12374310
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于锂基玻璃渗透的致密氧化锆表面功能梯度层的构建与机理研究
  • 批准号:
    82371011
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

High-energy lithium-air batteries, a breathable future for renewable energy
高能锂空气电池,可再生能源的呼吸未来
  • 批准号:
    DE240100868
  • 财政年份:
    2024
  • 资助金额:
    $ 62.15万
  • 项目类别:
    Discovery Early Career Researcher Award
A point of need clinical chemistry and hematology platform for improving accessibility to diagnostic testing
用于提高诊断测试可及性的临床化学和血液学平台需求点
  • 批准号:
    10757303
  • 财政年份:
    2023
  • 资助金额:
    $ 62.15万
  • 项目类别:
Uniquely high conversion and mechanically robust composite restorative materials for functionally elevated performance
独特的高转化率和机械坚固的复合修复材料,可提高功能性能
  • 批准号:
    10646845
  • 财政年份:
    2023
  • 资助金额:
    $ 62.15万
  • 项目类别:
Application of N-Oxides for the Synthesis of Nitrogen Heterocycles
N-氧化物在氮杂环合成中的应用
  • 批准号:
    10579651
  • 财政年份:
    2022
  • 资助金额:
    $ 62.15万
  • 项目类别:
Molecular mechanisms of lithium action on kinases
锂对激酶作用的分子机制
  • 批准号:
    10705786
  • 财政年份:
    2022
  • 资助金额:
    $ 62.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了