MICRO-INTERACT - Laser capture micro-dissection for identification of novel interactions within the plankton that underpin marine carbon cycling
微交互 - 激光捕获微解剖,用于识别支撑海洋碳循环的浮游生物内的新型相互作用
基本信息
- 批准号:NE/T009195/1
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interactions between marine organisms drive the transfer of carbon between trophic groups and ultimately determine the fate of carbon fixed by photosynthetic organisms. There is mounting evidence for a diverse array of interactions within the plankton that remain poorly characterised. For example, phytoplankton may become infected by pathogens (viruses and bacteria) or parasites (e.g. fungi), although our understanding of the extent and diversity of these interactions remains limited. Polysaccharides exuded by phytoplankton contribute to a large pool of labile carbon in the oceans, but the micro-organisms that recycle this carbon are also poorly characterised. Trophic interactions in the plankton are also difficult to assess without improved methodologies to assess gut contents or food vacuoles from predatory organisms.There is a clear need to study these diverse interactions in greater detail to improve our understanding of marine ecosystem function. However, transient interactions are often difficult to track and may be overlooked by techniques that assess bulk seawater. Direct microscopic observations of planktonic organisms is required to identify novel interactions between marine organisms, such as parasites and trophic interactions. However, to identify and study these organisms requires technically challenging and laborious picking of single cells or highly skilled tissue dissection. Fluorescence-activated cell sorting (FACS) do not allow visualisation of target cells and therefore cannot be easily linked to in situ observations and cannot be used to isolate novel species or interacting cells in a targeted manner (e.g. less abundant species or infected cells within a population) unless these cell types can be clearly discriminated from all of the other cells by their fluorescent properties.Improved technologies are therefore required to identify the many poorly characterised interactions within the plankton in a high throughput manner. We propose to use laser capture microdissection (LCM) for this purpose. LCM involves attaching microscopy samples to a membrane and isolating single cells and/or tissue by using a laser to cut the membrane around the cells of interest and then transfer them to a collecting vessel. The huge advantage of this approach is that it allows observed cells and tissue to be directly isolated in a simple and high-throughput manner. Harvested cells or tissue can then be further characterised by genomics, proteomics or metabolite profiling approaches. Live cells may be also isolated, free from contamination, for subsequent culturing and generation of novel cell lines.While LCM has been employed primarily in biomedical applications, the technique offers huge potential for environmental research. LCM has recently been used to isolate specific cell types from a brown seaweed (Ectocarpus) for gene expression studies, to isolate unicellular algae (e.g. Euglena and Chlamydomonas) for metabolite profiling, and to isolate the gut contents of fish larvae for subsequent molecular characterisation.The application of LCM to the plankton populations will provide a step-change in our ability to characterise key processes that underpin marine ecosystems. As examples, we aim to improve understanding of parasitism within the plankton and to identify novel parasites. We will also investigate the micro-organisms that degrade organic carbon in the oceans, by isolating individual transparent exopolymeric particles (TEP) for characterisation of their associated microbiomes. LCM will also be used to isolate previously uncultured phytoplankton species.LCM offers great flexibility for multiple users and will greatly speed up processes that have previously required laborious and highly skilled techniques.
海洋生物之间的相互作用驱动了营养基团之间碳的转移,并最终确定了光合生物固定的碳的命运。有越来越多的证据表明,浮游生物内各种相互作用的特征仍然很差。例如,尽管我们对这些相互作用的程度和多样性的理解仍然有限,但浮游植物可能会被病原体(病毒和细菌)或寄生虫(例如真菌)感染。浮游植物散发的多糖在海洋中有助于大量不稳定的碳,但是回收这种碳的微生物也很差。如果没有改进的方法论来评估肠道含量或掠食性生物的食物液泡,也很难评估浮游生物中的营养相互作用。显然,需要更详细地研究这些不同的相互作用,以提高我们对海洋生态系统功能的理解。但是,瞬态相互作用通常很难跟踪,并且可以通过评估散装海水的技术来忽视。需要对浮游生物的直接显微镜观察来鉴定海洋生物之间的新型相互作用,例如寄生虫和营养相互作用。但是,要识别和研究这些生物,需要在技术上具有挑战性的单细胞或高度熟练的组织解剖。荧光激活的细胞分选(FACS)不允许可视化靶细胞,因此不能轻易地链接到原位观察结果,不能以靶向方式分离新物种或相互作用的细胞(例如,较少丰富的物种或在一个内的感染细胞中,因此,除非这些细胞类型可以通过其荧光特性清楚地与所有其他细胞区分开。因此,需要高吞吐量的方式进行改进的技术以识别浮游生物中许多特征性较差的相互作用。我们建议将激光捕获微分解(LCM)用于此目的。 LCM涉及将显微镜样品连接到膜上,并通过使用激光切开感兴趣细胞周围的膜,然后将其转移到收集容器中,从而分离单细胞和/或组织。这种方法的巨大优势在于,它允许观察到的细胞和组织以简单且高通量的方式直接分离。然后,收获的细胞或组织可以通过基因组学,蛋白质组学或代谢物分析方法进一步特征。活细胞也可以被隔离,没有污染,以进行随后的培养和生成新的细胞系。虽然LCM主要用于生物医学应用,但该技术为环境研究提供了巨大的潜力。 LCM最近已用于将特定的细胞类型与基因表达研究的棕色海藻分离,以分离单细胞藻类(例如Euglena和euglena和chlamydomonas)代谢物谱图,并分离出幼虫的肠道含量,以进行后续分子表征。 LCM在浮游生物种群中的应用将为我们表征基于海洋生态系统的关键过程的能力提供逐步变化。作为例子,我们旨在提高对浮游生物内寄生虫的理解,并确定新颖的寄生虫。我们还将通过分离单个透明的外聚合颗粒(TEP)来表征其相关的微生物组,从而研究海洋中有机碳的微生物。 LCM还将用于隔离以前未经培养的浮游植物物种。LCM为多个用户提供了极大的灵活性,并将大大加快以前需要费力且高技能技术的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glen Wheeler其他文献
CHEN'S CONJECTURE AND ε-SUPERBIHARMONIC SUBMANIFOLDS OF RIEMANNIAN MANIFOLDS
陈猜想与黎曼流形ε-超调和子流形
- DOI:
10.1142/s0129167x13500286 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Glen Wheeler - 通讯作者:
Glen Wheeler
Convergence of Solutions to a Convective Cahn-Hilliard-Type Equation of the Sixth Order in Case of Small Deposition Rates
小沉积率情况下六阶对流 Cahn-Hilliard 型方程解的收敛性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2
- 作者:
P. Rybka;Glen Wheeler - 通讯作者:
Glen Wheeler
Abiotic stress-induced chloroplast and cytosolic Ca2+dynamics in the green alga Chlamydomonas reinhardtii
绿藻莱茵衣藻非生物胁迫诱导的叶绿体和胞质 Ca2 动力学
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matteo Pivato;Alex Costa;Glen Wheeler;Matteo Ballottari - 通讯作者:
Matteo Ballottari
A simple but effective bushfire model: analysis and real-time simulations
简单但有效的丛林火灾模型:分析和实时模拟
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Dipierro;E. Valdinoci;Glen Wheeler;V. Wheeler - 通讯作者:
V. Wheeler
Unstable Willmore surfaces of revolution subject to natural boundary conditions
受自然边界条件影响的不稳定威尔莫尔旋转面
- DOI:
10.1007/s00526-012-0551-y - 发表时间:
2012 - 期刊:
- 影响因子:2.1
- 作者:
Anna Dall’Acqua;K. Deckelnick;Glen Wheeler - 通讯作者:
Glen Wheeler
Glen Wheeler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glen Wheeler', 18)}}的其他基金
NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
NE/V013343/1 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
Assessing how cell size constrains carbon uptake in diatoms using direct measurements of cell surface carbonate chemistry
通过直接测量细胞表面碳酸盐化学来评估细胞大小如何限制硅藻的碳吸收
- 批准号:
NE/T000848/1 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
NSFGEO-NERC An unexpected requirement for silicon in coccolithophore calcification: ecological and evolutionary implications.
NSFGEO-NERC 颗石藻钙化过程中对硅的意外需求:生态和进化影响。
- 批准号:
NE/N011708/1 - 财政年份:2016
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
The role of ciliary Ca2+ signalling in the regulation of intraflagellar transport
纤毛 Ca2 信号传导在鞭毛内运输调节中的作用
- 批准号:
BB/M02508X/1 - 财政年份:2015
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
H+ fluxes in phytoplankton - a mechanistic and modelling study of their physiological roles and impact upon community responses to ocean acidification
浮游植物中的 H 通量 - 其生理作用及其对海洋酸化群落反应影响的机制和模型研究
- 批准号:
NE/J021296/1 - 财政年份:2012
- 资助金额:
$ 37.35万 - 项目类别:
Research Grant
相似国自然基金
长江经济带新型城镇化与水生态韧性的相互影响及耦合协调关系
- 批准号:72363022
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
夜间NO3自由基反应活性与臭氧污染之间相互影响机制研究
- 批准号:22376030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数据点相互影响的多阶密度聚类算法及其在大气污染时空数据中的应用研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
粘附蛋白结合与膜脂动态重排之间的相互影响研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
滨水植被群落生长扩张与河床演变的相互影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Discovery Projects
LTREB: How does inter-annual variation in rainfall interact with soil fertility and chronic disruption of soil moisture dynamics to alter soil C cycling in tropical forests?
LTREB:降雨量的年际变化如何与土壤肥力和土壤湿度动态的长期破坏相互作用,从而改变热带森林的土壤碳循环?
- 批准号:
2332006 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
RaMP: STEGG-INTERACT: Southeast Texas Evolutionary Genetics and Genomics INTEgrative Research and Collaborative Training
RaMP:STEGG-INTERACT:德克萨斯州东南部进化遗传学和基因组学综合研究和协作培训
- 批准号:
2319694 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant