Unearthing the role of microbiology in shale gas extraction: a bioreactor approach
挖掘微生物学在页岩气开采中的作用:生物反应器方法
基本信息
- 批准号:NE/R013462/1
- 负责人:
- 金额:$ 51.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
More than 1300 trillion cubic feet of natural gas is estimated to reside in UK shale formations, kilometers below the surface. This resource has the potential to fuel the nation for decades, and bridge the energy gap between the UK's dependence on coal and oil towards the sustainable renewable energies of the future. Natural gas is locked away in tight spaces within shale. To recover this gas for use as a fuel, these deep shale formations must be artifically fractured by a process called hydraulical fracturing. This process involves pumping millions of litres of water and chemicals into a horizontally-drilled well at high pressure, causing fractures to open through which natural gas can flow unimpeded. Although the government supports the exploitation of the UK's natural gas reserves, there is deep public concern over the environmental risks of hydraulic fracturing, triggered by widely publicised reports of environmental damge from hydraulic fracturing in the US. Whilst a comprehensive independent report deemed the risks of extraction to be low when conducted properly, these concerns must be addressed in order for the full potential of UK economy to benefit from this resource to be met.A number of chemicals that are added to injection water during hydrualic fracturing are known to stimulate microorganisms, and in particular microbial processes that negatively impact on natural gas and its extraction. These processes may lead, for example, to a depletion in additives in the input fluid (each of which serves a particular purpose in making shale gas extraction more efficient), as well as spoiling the natural gas, and causing corrosion of the well infrastructure. Collectively, these 'biofouling' processes lead to increased costs, reduced efficiency and a greater potential environmental impact.The research I propose is designed to tackle these issues. In partnership with a UK oil and gas servicing company, Rawwater Engineering Company Limited, I will test an array of injection fluid chemicals (individually and mixed together) for their potential to stimulate biofouling processes. These experiments will be conducted using bespoke, high pressure bioreactors that are designed to mimic the conditions of UK shale formations. Throughout these experiments I will apply state-of-the-art techniques to monitor changes to the chemistry and microbiology, and in doing so unearth the role of microbiology in the efficiency of shale gas extraction.The results of this research will shed light on the potential for injection fluid chemistry to stimulate biofouling, as well as the types of microorganisms that are responsible for these processes. In partnership with Rawwater and their links to the wider oil and gas industry, these results will allow me to develop diagnostic tools and control strategies that can be applied to field operations in order to maximise the efficiency and hence minise the environmental impact of shale gas extraction, to the benefit of the UK economy.
据估计,超过1300万亿立方英尺的天然气居住在英国页岩地层中,在地面以下公里。该资源有可能为国家助长数十年,并弥合英国对煤炭和石油的依赖之间的能源差距,以实现未来可持续的可再生能源。天然气被锁定在页岩中的狭窄空间中。为了回收这种气体作为燃料,这些深页岩形成必须通过称为水力压裂的过程来艺术破裂。该过程涉及将数百万升水和化学物质泵入高压时水平钻孔,导致裂缝打开,天然气可以不受阻碍地流动。尽管政府支持对英国天然气储量的开发,但公众对液压压裂的环境风险深表深刻的关注,这是由美国液压破裂的广泛宣传的环境昏暗的报告引发的。虽然一份全面的独立报告认为,正确进行提取的风险要低,但必须解决这些问题,以使英国经济的全部潜力从该资源中受益。在滤水过程中,已知会刺激微生物,尤其是对天然气及其提取的微生物过程。例如,这些过程可能导致输入流体中添加剂的耗竭(每个过程都具有使页岩气提取更有效的特定目的),并破坏天然气,并导致基础设施的腐蚀。总的来说,这些“生物污染”过程导致成本提高,效率降低和潜在的环境影响更大。我提出的研究旨在解决这些问题。与英国石油和天然气服务公司,Rawwater Engineering Company Limited合作,我将测试一系列注射液化学品(单独并混合在一起),以刺激生物污染过程。这些实验将使用定制的高压生物反应器进行,旨在模仿英国页岩地层的条件。在这些实验中,我将采用最先进的技术来监测化学和微生物学的变化,并在这样做时出现微生物学在页岩气提取效率中的作用。这项研究的结果将揭示注射液化学的潜力刺激生物污染,以及负责这些过程的微生物的类型。与Rawwater合作及其与更广泛的石油和天然气行业的联系,这些结果将使我能够制定诊断工具和控制策略,这些工具和控制策略可以应用于现场操作,以最大程度地提高效率,从而削减页岩气提取的环境影响,为英国经济利益。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface
- DOI:10.1128/msphere.00613-19
- 发表时间:2019-11-01
- 期刊:
- 影响因子:4.8
- 作者:Nixon, Sophie L.;Daly, Rebecca A.;Wrighton, Kelly C.
- 通讯作者:Wrighton, Kelly C.
New microbiological insights from the Bowland shale highlight heterogeneity of the hydraulically fractured shale microbiome.
- DOI:10.1186/s40793-023-00465-1
- 发表时间:2023-02-28
- 期刊:
- 影响因子:7.9
- 作者:
- 通讯作者:
Identification of Persistent Sulfidogenic Bacteria in Shale Gas Produced Waters
- DOI:10.3389/fmicb.2020.00286
- 发表时间:2020-02-21
- 期刊:
- 影响因子:5.2
- 作者:Cliffe, Lisa;Nixon, Sophie L.;Lloyd, Jonathan R.
- 通讯作者:Lloyd, Jonathan R.
Limitations of microbial iron reduction under extreme conditions.
- DOI:10.1093/femsre/fuac033
- 发表时间:2022-11-02
- 期刊:
- 影响因子:11.3
- 作者:Nixon, Sophie L.;Bonsall, Emily;Cockell, Charles S.
- 通讯作者:Cockell, Charles S.
Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales
用于水力压裂的淡水中的微生物群落无法承受裂隙页岩的高温和高压特征
- DOI:10.1099/acmi.0.000515.v1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Nixon S
- 通讯作者:Nixon S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophie Nixon其他文献
Sophie Nixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophie Nixon', 18)}}的其他基金
Rules of life in CO2-driven microbial communities: Microbiome engineering for a Net Zero future
二氧化碳驱动的微生物群落的生命规则:净零未来的微生物组工程
- 批准号:
BB/Y003195/1 - 财政年份:2024
- 资助金额:
$ 51.8万 - 项目类别:
Research Grant
Microbial carbon cycling under geological CO2 storage conditions: understanding the rules of life in the engineered subsurface
地质二氧化碳储存条件下的微生物碳循环:了解工程地下的生命规则
- 批准号:
BB/V00560X/1 - 财政年份:2022
- 资助金额:
$ 51.8万 - 项目类别:
Fellowship
相似国自然基金
基于可解释机器学习的科学知识角色转变预测研究
- 批准号:72304108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
骑墙守望还是全力奔赴:基于角色理论的混合创业进入、退出与长期回报研究
- 批准号:72372119
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
非宿主噬菌体在宿主噬菌体裂解水稻白叶枯病菌中的帮助角色及其自我牺牲机制研究
- 批准号:32372614
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
喜忧参半:服务机器人角色对旅游企业员工幸福感的双路径影响机制研究
- 批准号:72302099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
旅游参与度差异视角下乡村妇女社会角色变迁、自我效能感及其关联机制研究
- 批准号:72362010
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 51.8万 - 项目类别:
Impact of Diabetes hyperglycemia on peri-implantitis
糖尿病高血糖对种植体周围炎的影响
- 批准号:
10668057 - 财政年份:2023
- 资助金额:
$ 51.8万 - 项目类别:
Environmental Chemical Impact on the Host-Microbiome Interaction
环境化学对宿主-微生物组相互作用的影响
- 批准号:
10641509 - 财政年份:2023
- 资助金额:
$ 51.8万 - 项目类别:
Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis
马拉色菌和耳念珠菌:皮肤微生物群失调和皮肤稳态失调
- 批准号:
10661959 - 财政年份:2023
- 资助金额:
$ 51.8万 - 项目类别: