Parallel Scalability of Elliptic Solvers in Weather and Climate Prediction

椭圆求解器在天气和气候预测中的并行可扩展性

基本信息

  • 批准号:
    NE/J005576/1
  • 负责人:
  • 金额:
    $ 22.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The UK Met Office is one of the world leaders in weather and climate prediction, and the Met Office's global forecast model is used by many other centres worldwide to drive their individual local area models. However, many short scale phenomena as well as important longterm dynamics are still difficult to predict accurately due to the limited spatial resolution of global models and the additional errors introduced by local area models. Novel computing architectures with more than 10^5 cores provide a chance to push these boundaries and to keep the UK Met Office at the forefront of developments. Decades of experience with numerical weather and climate prediction have produced a good understanding of the core dynamics inherent in atmospheric flow and of their stable and accurate numerical approximations. As outlined in the call, the Met Office's Unified Model uses lattitude-longitude grids and achieves high efficiency on parallel computers with up to 1000 cores. However, (artificial) grid clustering at the poles renders these grids impractical for large-scale computations, and so one of the core tasks in this NERC Programme is the search for suitable alternative grids. Several separate proposals address this issue. However, the equations governing atmospheric flow form a time-dependent system of differential equations which strongly couple the solution everywhere on the globe (the famous "butterfly effect"). Most current atmospheric dynamics models use semi-implicit time discretisation schemes which provide some global coupling of the equations at each time step. This prevents the system from becoming unstable and as a consequence it allows for larger time steps than fully explicit schemes, which include no global coupling. Since the cost of the forecast is proportional to the number of time steps, a scheme that allows for larger time steps (with satisfactory accuracy) seems preferable. But these benefits come at a price, especially in the context of large-scale problems and on massively parallel architectures. An elliptic system for the pressure has to be solved in each time step, leading to a very large, ill-conditioned algebraic system, the solution of which is difficult to parallelise efficiently. There are two main factors that make the scaling of this elliptic solve to large problem sizes and to large processor numbers difficult: algorithmic scalability and parallel scalability. Since the solution operator for the elliptic equation couples the pressures globally, only multilevel iterative solvers which use a hierarchy of discretisations on grids of varying resolution allow optimal, linear growth in cost (algorithmic scalability). But in a massively parallel computing environment, where global communication is costly, it is necessary to implement these solvers well, keeping most of the communication local, to ensure that the computational cost continues to scale optimally to 100K or more processors (parallel scalability).This proposal addresses this problem and will thus facilitate the best possible decisions on the design of the Met Office's future dynamical core, thus guaranteeing the UK's competitiveness in this key societal/technological challenge. An optimal scalability of semi-implicit schemes has not been achieved in atmospheric flow up to now, but success of the Project Partners, IWR Heidelberg and Lawrence Livermore National Lab, on simpler model elliptic problems shows that it is possible. The PIs experience over the years in obtaining optimal scalability of elliptic solvers on the most current architectures in various application areas, most notably for elliptic problems from atmospheric flow discretised on latitude-longitude grids up to 256 cores, as well as his status as one of the world's leading theoretical analysts of multilevel iterative elliptic solvers and his links to other world leading groups in this field, mean that that he is ideally equipped to achieve this goal.
英国气象局是天气和气候预测领域的世界领先者之一,全球许多其他中心都使用英国气象局的全球预报模型来驱动各自的本地区域模型。然而,由于全局模型的空间分辨率有限以及局部区域模型引入的额外误差,许多短尺度现象以及重要的长期动态仍然难以准确预测。具有超过 10^5 核心的新型计算架构提供了突破这些界限的机会,并使英国气象局保持在发展的最前沿。数十年的数值天气和气候预测经验使人们对大气流动固有的核心动力学及其稳定而准确的数值近似有了很好的理解。正如电话中所述,英国气象局的统一模型使用经纬度网格,并在最多 1000 个内核的并行计算机上实现了高效率。然而,极点处的(人工)网格聚类使得这些网格对于大规模计算来说不切实际,因此该 NERC 计划的核心任务之一是寻找合适的替代网格。几个单独的提案解决了这个问题。然而,控制大气流动的方程形成了一个与时间相关的微分方程组,该系统与全球各地的解强耦合(著名的“蝴蝶效应”)。当前大多数大气动力学模型都使用半隐式时间离散方案,该方案在每个时间步长处提供一些方程的全局耦合。这可以防止系统变得不稳定,因此它允许比完全显式方案(不包括全局耦合)更大的时间步长。由于预测的成本与时间步数成正比,因此允许更大时间步长(具有令人满意的精度)的方案似乎更可取。但这些好处是有代价的,特别是在大规模问题和大规模并行架构的背景下。压力的椭圆系统必须在每个时间步长中求解,从而导致非常大的病态代数系统,其求解很难有效地并行化。有两个主要因素使得该椭圆求解难以扩展到大问题规模和大处理器数量:算法可扩展性和并行可扩展性。由于椭圆方程的解算子全局耦合压力,因此只有在不同分辨率的网格上使用离散层次的多级迭代求解器才能实现成本的最佳线性增长(算法可扩展性)。但在大规模并行计算环境中,全局通信成本高昂,因此有必要很好地实现这些求解器,将大部分通信保持在本地,以确保计算成本继续最佳地扩展到 100K 或更多处理器(并行可扩展性)。该提案解决了这个问题,从而有助于就英国气象局未来动力核心的设计做出最佳决策,从而保证英国在这一关键社会/技术挑战中的竞争力。迄今为止,半隐式方案的最佳可扩展性尚未在大气流动中实现,但项目合作伙伴 IWR 海德堡和劳伦斯·利弗莫尔国家实验室在更简单的模型椭圆问题上的成功表明这是可能的。 PI 多年来在各种应用领域的最新架构上获得椭圆求解器的最佳可扩展性方面拥有丰富的经验,尤其是在多达 256 个核心的经纬度网格上离散化的大气流的椭圆问题,以及他作为世界领先的多级迭代椭圆求解器理论分析师以及他与该领域其他世界领先团体的联系意味着他完全有能力实现这一目标。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Met Office Weather and Climate Forecasts with Bespoke Multigrid Solvers
使用定制多重网格求解器改进气象局天气和气候预测
  • DOI:
    http://dx.10.48550/arxiv.2307.04528
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malcolm A
  • 通讯作者:
    Malcolm A
A robust numerical method for the potential vorticity based control variable transform in variational data assimilation
变分数据同化中基于位涡控制变量变换的鲁棒数值方法
High level implementation of geometric multigrid solvers for finite element problems: Applications in atmospheric modelling
有限元问题几何多重网格求解器的高级实现:在大气建模中的应用
  • DOI:
    http://dx.10.1016/j.jcp.2016.09.037
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Mitchell L
  • 通讯作者:
    Mitchell L
Efficient Multigrid Preconditioners for Atmospheric Flow Simulations at High Aspect Ratio
用于高纵横比大气流动模拟的高效多重网格预处理器
  • DOI:
    http://dx.10.48550/arxiv.1408.2981
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dedner A
  • 通讯作者:
    Dedner A
Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
异质椭圆问题不连续伽辽金离散的代数多重网格
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Scheichl其他文献

Energy‐minimizing coarse spaces for two‐level Schwarz methods for multiscale PDEs
多尺度 PDE 的两级 Schwarz 方法的能量 — 最小化粗空间
Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
异质椭圆问题不连续伽辽金离散的代数多重网格
Numerical Analysis of Multiscale Problems - Volume 83
多尺度问题的数值分析 - 第 83 卷
  • DOI:
  • 发表时间:
    2014-02-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Graham;T. Hou;O. Lakkis;Robert Scheichl
  • 通讯作者:
    Robert Scheichl
Customized Coarse Models for Highly Heterogeneous Materials
高度异质材料的定制粗略模型
  • DOI:
    10.1007/978-3-319-56397-8_72
  • 发表时间:
    2017-05-21
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    T. Dodwell;A. Sandhu;Robert Scheichl
  • 通讯作者:
    Robert Scheichl
A Two-Level Schwarz Preconditioner for Heterogeneous Problems
异质问题的两级 Schwarz 预处理器

Robert Scheichl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Scheichl', 18)}}的其他基金

A scalable dynamical core for Next Generation Weather and Climate Prediction - Phase 2
下一代天气和气候预测的可扩展动力核心 - 第 2 阶段
  • 批准号:
    NE/K006754/1
  • 财政年份:
    2013
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Research Grant
Multilevel Monte Carlo Methods for Elliptic Problems with Applications to Radioactive Waste Disposal
椭圆问题的多级蒙特卡罗方法及其在放射性废物处置中的应用
  • 批准号:
    EP/H051503/1
  • 财政年份:
    2011
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Research Grant

相似国自然基金

具备可扩展性与隐私保障的数据驱动分布式优化方法及其在需求响应中的应用
  • 批准号:
    72301008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMT采样增强的符号执行可扩展性关键技术研究
  • 批准号:
    62372162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于光-原子协同操控的可扩展性量子精密测量
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    291 万元
  • 项目类别:
联盟链可扩展性技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Automatic battery swapping cabinet development for scalability of e-mobility in Uganda
自动电池交换柜开发,以提高乌干达电动汽车的可扩展性
  • 批准号:
    10080435
  • 财政年份:
    2024
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Collaborative R&D
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Research Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Research Grant
CAREER: Addressing Scalability Challenges in Designing Next-generation GPU-Based Heterogeneous Architectures
职业:解决设计下一代基于 GPU 的异构架构时的可扩展性挑战
  • 批准号:
    2316694
  • 财政年份:
    2023
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Continuing Grant
Applicability and scalability of a sustainable re-construction framework for seismic-prone heritage areas of Gujarat, India.
印度古吉拉特邦地震多发遗产地区可持续重建框架的适用性和可扩展性。
  • 批准号:
    AH/X006832/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了