In Control of Transpiration: The Evolutionary Interplay between Cuticle, Stomata, and Air Pores

蒸腾作用的控制:角质层、气孔和气孔之间的进化相互作用

基本信息

  • 批准号:
    NE/K009303/1
  • 负责人:
  • 金额:
    $ 64.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

If you scrape your fingernail lightly across the surface of some plants like the Cactus, you may pick up a smattering of wax, as if you'd run your fingernail down the side of a candle. In fact, almost all the surfaces of plants, the stems, leaves, flowers and fruit are covered in a tiny layer of wax called the cuticle. This layer is too thin to see because it is thousands of times thinner than a human hair. However its effects can be seen. It is this waxy layer that makes leaves look shiny, allows you to polish your apple, and causes water droplets to roll smoothly off the surface of leaves in a rain shower. It is this waxy cuticle that allows plants to live on the land without drying out. As such, the cuticle is one of the most important evolutionary inventions in the history of our planet because it has allowed life to leave the watery oceans and survive on dry land. Life and land has never been the same since. The cuticle also does a lot of other useful things for the plants. For example, it blocks bacteria and fungi from infecting the plant, much like human skin. Indeed, one of the reasons that fruit can last for days in the fruit bowl without becoming rotten is due to the protective effects of the waxy cuticle. We have a lot to learn about how plants make waxes, and move these waxes from where they are manufactured inside the plants to the surface of the plant. The waxy components of the cuticle are made, transported and assembled on the surface by proteins, which are encoded for by genes in a plant's DNA. However we have still to identify many of the genes involved in making the cuticle. It is important to identify these genes because it could help us to design better crops to resist diseases and to create fruit that last longer, and have a longer shelf life with less food waste. It may also help us to commercially synthesise waxes by copying these genes into the DNA of other organisms. Remarkably we also do not know how plants first evolved the wax cuticle. We do not know what the function of the waxy layer was in the first land plants, what steps were involved in the evolution of the waxy layer, and how it affected the biology of these land plants. We don't know which genes were important in its evolution or how the cuticle has changed and evolved over millions of years. However, by studying the cuticle in plants that represent the first lineages to survive on land, we can get a sense of how the cuticle has changed through evolution and with changing climate. In this project I would look at living relatives of some of the earliest plants to move onto land. I will compare the DNA of plants that never moved onto land and do not have a cuticle, with DNA from land plants that do have a cuticle. This will help detect genes that are involved in making the cuticle and reveal how these genes have changed over time. I will interfere with these genes to stop them working, in order to see how they make the waxy cuticle in these early plants. Together this will help us to better understand to what extent all land plants have the same genes to make cuticle in the same way, and to what extent the cuticle had similar properties and functions in the past and present. Plants are constantly absorbing water from the soil and transferring it to the atmosphere via tiny pores called stomata - a process called transpiration. Together plants all over the planet release an enormous amount of moisture into the air, which in turn forms clouds and rain. The waterproof cuticle drastically reduces transpiration and consequently affects the global climate. We do not know how the cuticle of plants will respond to man made changes to the climate. This study will lead to better understanding of the cuticle across all land plants and allow us to predict the effect of changing temperature, carbon dioxide, and drought on the cuticle. This in turn will allow us to better understand how plants will respond to the changing climate
如果您在仙人掌等某些植物的表面上轻轻刮擦指甲,您可以拿起一丝蜡,就好像您将指甲沿蜡烛的侧面伸到一样。实际上,几乎所有的植物表面,茎,叶,花和水果都被一小部分的蜡覆盖,称为角质层。该层太薄而看不到,因为它比人的头发要薄数千倍。但是可以看到它的效果。正是这种蜡质层使叶子看起来有光泽,使您可以抛光苹果,并导致水滴在雨水淋浴中平稳从叶子表面滚下来。正是这种蜡质角质层使植物可以在土地上生活而不会干燥。因此,角质层是我们星球历史上最重要的进化发明之一,因为它使生命能够离开水流并在干燥的土地上生存。从那以后,生命和土地从未如此。角质层还为植物做了许多其他有用的事情。例如,它阻止细菌和真菌感染植物,就像人类皮肤一样。的确,果实可以在水果碗中持续数天而不会腐烂的原因之一是由于蜡质角质层的保护作用。我们有很多关于植物如何制作蜡的知识,并将这些蜡从植物内部生产的地方移至植物表面。表皮的蜡状成分由蛋白质制成,运输和组装在蛋白质上,这些蛋白质由植物DNA中的基因编码。但是,我们仍然必须识别出制作角质层的许多基因。重要的是要识别这些基因,因为它可以帮助我们设计更好的农作物来抵抗疾病并创造持续更长的果实,并具有更长的保质期,而食物浪费较少。它也可以通过将这些基因复制到其他生物体的DNA中,从而帮助我们在商业上合成蜡。值得注意的是,我们也不知道植物如何首次进化蜡角质层。我们不知道蜡质层在第一批陆地植物中的功能,蜡质层的演变涉及哪些步骤,以及它如何影响这些土地植物的生物学。我们不知道哪些基因在其进化中很重要,或者角质层在数百万年内如何改变和进化。但是,通过研究代表第一个谱系生存的植物中的角质层,我们可以了解角质层如何通过进化和气候变化而改变。 在这个项目中,我将研究一些最早的植物的亲戚,这些植物搬到了土地上。我将比较从未移动到土地而没有角质层的植物的DNA,而陆地植物的DNA确实有角质层。这将有助于检测涉及的基因制造角质层并揭示这些基因随时间变化的变化。我将干扰这些基因以阻止它们起作用,以了解它们如何在这些早期植物中制作蜡状角质层。这将有助于我们更好地理解所有土地植物在多大程度上具有相同的基因以相同的方式制作角质层,并且在过去和现在,角质层在多大程度上具有相似的特性和功能。植物不断吸收从土壤中吸收水,并通过称为气孔的微小毛孔将其转移到大气中,这是一种称为蒸腾的过程。整个地球上的植物一起释放了大量的水分,从而形成云层和雨水。防水角质层大大减少了蒸腾作用,因此影响了全球气候。我们不知道植物的角质层将如何应对人类的气候改变。这项研究将使对所有土地植物的角质层更好地了解,并使我们能够预测温度变化,二氧化碳和干旱对角质层的影响。反过来,这将使我们能够更好地了解植物将如何应对不断变化的气候

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure.
  • DOI:
    10.1093/molbev/msu147
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    10.7
  • 作者:
    Bennett T;Brockington SF;Rothfels C;Graham SW;Stevenson D;Kutchan T;Rolf M;Thomas P;Wong GK;Leyser O;Glover BJ;Harrison CJ
  • 通讯作者:
    Harrison CJ
Plant Conservation Science and Practice - The Role of Botanic Gardens
植物保护科学与实践 - 植物园的作用
  • DOI:
    10.1017/9781316556726.009
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brockington S
  • 通讯作者:
    Brockington S
HOW HAVE ADVANCES IN COMPARATIVE FLORAL DEVELOPMENT INFLUENCED OUR UNDERSTANDING OF FLORAL EVOLUTION?
  • DOI:
    10.1086/681562
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Glover, Beverley J.;Airoldi, Chiara A.;Taylor, Lin
  • 通讯作者:
    Taylor, Lin
10KP: A phylodiverse genome sequencing plan.
10KP:系统多样性基因组测序计划。
  • DOI:
    10.1093/gigascience/giy013
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Cheng S;Melkonian M;Smith SA;Brockington S;Archibald JM;Delaux PM;Li FW;Melkonian B;Mavrodiev EV;Sun W;Fu Y;Yang H;Soltis DE;Graham SW;Soltis PS;Liu X;Xu X;Wong GK
  • 通讯作者:
    Wong GK
Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.
  • DOI:
    10.1111/nph.13441
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brockington SF;Yang Y;Gandia-Herrero F;Covshoff S;Hibberd JM;Sage RF;Wong GK;Moore MJ;Smith SA
  • 通讯作者:
    Smith SA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Brockington其他文献

Samuel Brockington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Brockington', 18)}}的其他基金

NSFDEB-NERC; Collaborative Resource; A phytochemical "tug-of-war" and its impact on organismal diversification and niche occupancy in Caryophyllales
NSFDEB-NERC;
  • 批准号:
    NE/V003852/1
  • 财政年份:
    2020
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Research Grant

相似国自然基金

二氧化碳浓度升高影响下植被蒸腾过程模拟及其关联水文效应预测
  • 批准号:
    42301033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
阿巴嘎旗公路沿线沙尘对典型草原植被蒸腾的影响
  • 批准号:
    42301348
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黑河下游胡杨树干储水释放对蒸腾贡献模拟研究
  • 批准号:
    42301030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
风沙流对西北旱区典型固沙灌木建植和蒸腾耗水的影响
  • 批准号:
    32360427
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
电子蒸腾冷却防热机制多维原位表征与非平衡流动—传热—热电子发射耦合模型研究
  • 批准号:
    U22B20132
  • 批准年份:
    2022
  • 资助金额:
    257.00 万元
  • 项目类别:
    联合基金项目

相似海外基金

Development of Transpiration-Type Thermoelectric Power Generation Elements that Require No Heat Source
无需热源的蒸腾式温差发电元件的开发
  • 批准号:
    23K17814
  • 财政年份:
    2023
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Pressure fluctuations in transpiration cooling: a DNS study
蒸腾冷却中的压力波动:DNS 研究
  • 批准号:
    572963-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 64.94万
  • 项目类别:
    University Undergraduate Student Research Awards
Adapting wheat to stressful environments: Identifying key transpiration efficiency components reducing day-time water loss and heat stress linked to yield
使小麦适应压力环境:确定关键的蒸腾效率组成部分,减少与产量相关的白天水分流失和热应激
  • 批准号:
    570351-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Alliance Grants
SBIR Phase I: Orchard Transpiration Irrigation
SBIR 第一阶段:果园蒸腾灌溉
  • 批准号:
    2051966
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Standard Grant
Adapting wheat to stressful environments: Identifying key transpiration efficiency components reducing day-time water loss and heat stress linked to yield
使小麦适应压力环境:确定关键的蒸腾效率组成部分,减少与产量相关的白天水分流失和热应激
  • 批准号:
    570351-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了