Global Imaging of the Lithosphere-Asthenosphere Boundary using Scattered Waves
使用散射波对岩石圈-软流圈边界进行全球成像
基本信息
- 批准号:NE/G013438/2
- 负责人:
- 金额:$ 11.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The surface of our planet is composed of a number of tectonic plates, resembling an eggshell that has been cracked, but not opened. These plates are called the lithosphere. The lithosphere moves over a weak layer that is called the asthenosphere. This movement is referred to as plate tectonics. The lithosphere is constantly being destroyed, where one plate is dragged down, or subducts, beneath another, and enters the asthenosphere. It is also constantly being created, at mid-ocean ridges, where two plates are pulled apart, causing melt to rise into the void, and cool to form new crust. The earth is made of many layers, and the locations of the layers as well as the cause for the layering (e.g. changes in rock type or state) are relatively well known. However, the lithosphere-asthenosphere boundary is not globally located, nor is the mechanism that defines it well known. The interface between the lithosphere and the asthenosphere is a very important boundary in that the nature of the boundary has implications for the driving forces of plate tectonics and the origin and evolution of the continents on which we live. Plate tectonics is what drives natural disasters like earthquakes, volcanic eruptions, and tsunamis. Continent formation is puzzling since it is no longer occurring, and most continental interiors are billions of years ago. We would like to know how they formed and what enabled their formation, and stability through time, since they make up the area of the earth that is hospitable to humans. To investigate this boundary I use the energy from earthquakes, seismic waves, recorded at distant stations to image boundaries in the earth, since changes in the velocity of the earth affect the path of the waves. Seismologists have collected much seismic data over the past ~20 years at permanent seismic stations located primarily on continents. We also collect data from high density deployments of temporary arrays of seismometers. The data gives us high resolution imaging capabilities, and this allows us to constrain seismic velocity gradients in great detail. Such constraints tell us about the mechanism that defines the lithosphere-asthenosphere boundary. Experiments done on rocks help us determine the effects of various parameters like temperature, composition, and melting have on seismic waves. What they tell us is that gradual velocity gradient can be explained by the transition from a cool lithosphere, to a hotter asthenosphere. However, seismically sharp boundaries require other mechanisms to explain them. Compositional changes, i.e. mineral content and/or hydration, or a small amount of melting in the asthenosphere could be responsible for sharp velocity contrasts. Sharp boundaries mean that the lithosphere and the asthenosphere are very decoupled, and plate motions are driven by the gravitational pull of dense plates where they subduct into the asthenosphere. Gradual boundaries indicate increased coupling, and the notion that motions in the mantle beneath the lithosphere may play a larger role. We plan to look for sharp boundaries associated with the lithosphere-asthenosphere boundary, and investigate variations in the depth and character of the boundary in a variety of tectonic environments. Beneath oceans sharp boundaries are frequently imaged, and they are occasionally imaged beneath continents. It is often assumed that different mechanisms define the boundary beneath continents and oceans. However, it remains a puzzle why such a boundary would be defined in different ways in different locations. We plan to resolve this issue with global modeling of the boundary using high frequency energy that gives us information about the character of the interface. In some cases, we may also image boundaries that are interior to the lithosphere. But these are also interesting since they can tell us about the building blocks that compose the continents, with implications for their formation and evolution.
我们星球的表面由许多板块组成,就像一个已破裂但尚未打开的蛋壳。这些板块称为岩石圈。岩石圈在称为软流圈的薄弱层上移动。这种运动被称为板块构造运动。岩石圈不断遭到破坏,一个板块被拖拽或俯冲到另一个板块下方,并进入软流圈。它也在大洋中脊处不断产生,两块板块被拉开,导致熔体上升到虚空,并冷却形成新的地壳。地球由许多层组成,各层的位置以及分层的原因(例如岩石类型或状态的变化)是相对众所周知的。然而,岩石圈-软流圈边界并不是全球性的,定义它的机制也不是众所周知的。岩石圈和软流圈之间的界面是一个非常重要的边界,因为边界的性质对板块构造的驱动力以及我们所生活的大陆的起源和演化具有影响。板块构造是引发地震、火山爆发和海啸等自然灾害的原因。大陆的形成令人费解,因为它不再发生,而且大多数大陆内部都是数十亿年前的。我们想知道它们是如何形成的,是什么促成了它们的形成,以及随着时间的推移保持稳定,因为它们构成了地球上适合人类居住的区域。为了研究这个边界,我使用在遥远的站点记录的地震、地震波的能量来对地球的边界进行成像,因为地球速度的变化会影响波的路径。在过去约 20 年里,地震学家在主要位于大陆的永久性地震台上收集了大量地震数据。我们还从高密度部署的临时地震仪阵列中收集数据。这些数据为我们提供了高分辨率成像能力,这使我们能够非常详细地约束地震速度梯度。这些约束告诉我们定义岩石圈-软流圈边界的机制。在岩石上进行的实验有助于我们确定温度、成分和熔化等各种参数对地震波的影响。他们告诉我们的是,渐进的速度梯度可以通过从冷的岩石圈到更热的软流圈的转变来解释。然而,地震尖锐边界需要其他机制来解释。成分变化,即矿物含量和/或水合作用,或软流圈中的少量熔化可能是造成急剧速度对比的原因。尖锐的边界意味着岩石圈和软流圈是非常分离的,板块运动是由致密板块的引力驱动的,它们俯冲到软流圈中。逐渐的边界表明耦合增加,并且岩石圈下方地幔的运动可能发挥更大作用的概念。我们计划寻找与岩石圈-软流圈边界相关的尖锐边界,并研究各种构造环境中边界深度和特征的变化。经常在海洋下方拍摄到清晰的边界,有时也会在大陆下方拍摄到它们。人们通常认为不同的机制定义了大陆和海洋的边界。然而,为什么在不同的地点以不同的方式定义这样的边界仍然是一个谜。我们计划通过使用高频能量对边界进行全局建模来解决这个问题,高频能量为我们提供有关界面特征的信息。在某些情况下,我们还可以对岩石圈内部的边界进行成像。但这些也很有趣,因为它们可以告诉我们构成大陆的组成部分,及其对其形成和演化的影响。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow SHARP THERMAL TRANSITION IN THE WEDGE
非线性地幔楔形流动导致弧前地幔楔发生急剧热转变 楔形发生急剧热转变
- DOI:http://dx.10.1029/2011gl047705
- 发表时间:2011
- 期刊:
- 影响因子:5.2
- 作者:Wada I
- 通讯作者:Wada I
Imaging the lithosphere-asthenosphere boundary beneath the Pacific using SS waveform modeling
使用 SS 波形模型对太平洋下方的岩石圈-软流圈边界进行成像
- DOI:10.1029/2010jb008070
- 发表时间:2011-07-01
- 期刊:
- 影响因子:0
- 作者:C. Rychert;P. Shearer
- 通讯作者:P. Shearer
Receiver function imaging of lithospheric structure and the onset of melting beneath the Galápagos Archipelago
加拉帕戈斯群岛下方岩石圈结构和融化开始的接收函数成像
- DOI:http://dx.10.1016/j.epsl.2013.11.027
- 发表时间:2014
- 期刊:
- 影响因子:5.3
- 作者:Rychert C
- 通讯作者:Rychert C
The Pacific lithosphere-asthenosphere boundary: Seismic imaging and anisotropic constraints from SS waveforms
太平洋岩石圈-软流圈边界:地震成像和SS波形的各向异性约束
- DOI:http://dx.10.1029/2012gc004194
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Rychert C
- 通讯作者:Rychert C
Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence
阿法尔裂谷中的火山活动由减压融化维持,羽流影响极小
- DOI:http://dx.10.1038/ngeo1455
- 发表时间:2012
- 期刊:
- 影响因子:18.3
- 作者:Rychert C
- 通讯作者:Rychert C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Rychert其他文献
Catherine Rychert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Rychert', 18)}}的其他基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Collaborative Research: Mantle Dynamics and Plate Tectonics Constrained by Converted and Reflected Seismic Wave Imaging Beneath Hotspots
合作研究:热点下方转换和反射地震波成像约束的地幔动力学和板块构造
- 批准号:
2147918 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Continuing Grant
Passive Imaging of the Lithosphere Asthensphere Boundary (PiLAB)
岩石圈软流圈边界被动成像 (PiLAB)
- 批准号:
NE/M003507/1 - 财政年份:2016
- 资助金额:
$ 11.54万 - 项目类别:
Research Grant
Volatile Recycling at the Lesser Antilles Arc: Processes and Consequences
小安的列斯群岛弧的挥发性回收:过程和后果
- 批准号:
NE/K010654/1 - 财政年份:2015
- 资助金额:
$ 11.54万 - 项目类别:
Research Grant
Global Seismic Imaging of the Oceanic Plates
海洋板块的全球地震成像
- 批准号:
NE/K000985/1 - 财政年份:2013
- 资助金额:
$ 11.54万 - 项目类别:
Research Grant
Global Imaging of the Lithosphere-Asthenosphere Boundary using Scattered Waves
使用散射波对岩石圈-软流圈边界进行全球成像
- 批准号:
NE/G013438/1 - 财政年份:2009
- 资助金额:
$ 11.54万 - 项目类别:
Fellowship
相似国自然基金
基于影像-病理组学的下咽癌免疫分型及疗效预测研究
- 批准号:82303946
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
减重术后复胖患者大脑“奖赏-控制”回路功能异常变化的影像学与脑调控干预研究
- 批准号:82302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消痰活血通滞方干预精神分裂效应的神经影像学与表观遗传学机制研究
- 批准号:82374438
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于脑连接组学探索卒中后慢性失语症分类及针刺干预疗效预测的神经影像标记物研究
- 批准号:82374555
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
前列腺癌AR活性相关的影像基因组学评估新型内分泌治疗疗效的研究
- 批准号:82302308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Discovery Grants Program - Individual
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Discovery Grants Program - Individual
Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity
利用地震波衰减和速度成像新方法探测南极西部岩石圈和软流圈
- 批准号:
2201129 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2021
- 资助金额:
$ 11.54万 - 项目类别:
Discovery Grants Program - Individual
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2021
- 资助金额:
$ 11.54万 - 项目类别:
Discovery Grants Program - Individual