Storm Prediction Information for Decision Making at Sea

用于海上决策的风暴预测信息

基本信息

  • 批准号:
    NE/I008497/1
  • 负责人:
  • 金额:
    $ 10.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The potential value of storm prediction research carried out at the University of Reading has been recognised by a number of industry sectors, including the marine, insurance and oil and gas. However, the question of how to interpret and utilise this information presents a major barrier. One of the major difficulties is that these industry sectors are only used to handling static information and do not know how to handle time-varying environmental data. In order to encourage these business sectors to make the required investments to overcome this barrier, it is necessary to illustrate the potential benefits of storm prediction information in a business sector that is already familiar with handling time-varying environmental data. The marine sector has such experience and is also an industry sector critical to the UK. This project will be carried out in collaboration with British Marine Technology Group Ltd ARGOSS (BMT ARGOSS, http://www.bmtargoss.com/), a technical consulting company, specialist provider and leading innovator in the supply of marine environmental information. They are already able to handle time varying data, making them an ideal partner for this project. ESSC has a longstanding relationship with the BMT Group, who have provided a research sponsorship program over the past 9 years. The maritime sector interacts with other sectors, including insurance and oil and gas, so a successful implementation of the project deliverables into BMT's systems will demonstrate the benefits to other industry sectors. Accurate forecast information about storms is vital for decision making at sea. Activities ranging from ship routing to resource exploration require such information to optimise operations and to prevent economic and human losses. For example Hurricane Katrina and other hurricanes in the Gulf of Mexico have led to repeated disruption of the oil and gas industries located there, and similar disruptions are faced regularly by operators elsewhere in the world. Ship routing systems aim to avoid dangerous weather as well as finding routes that are optimal in terms of time and fuel costs. This project aims to develop methods and tools for extracting forecast information about storms from forecast data that can be used for decision making at sea. In recent years ESSC has developed extensive expertise in analysing the ability of forecast models to predict storms. This research has particularly focused on a type forecasting system known as an Ensemble Prediction System (EPS). An EPS involves running a model multiple times from slightly different initial states to generate an ensemble of forecasts providing information about the uncertainty/probability of forecasts of severe weather events. The storm tracking approach provides useful storm focused forecast information, which it is not possible to obtain from traditional data analysis approaches used at operational weather centres. This KE proposal will enable BMT ARGOSS to utilise such novel information, to improve and extend the services they can offer their clients and thereby improve decision making at sea. In addition to storm prediction information, wind and wave Earth observation (EO) data from satellites are essential to marine operations. ESSC is currently proposing the development of an Applications program at the new International Space Innovation Centre (ISIC) based at Harwell and is thus in an excellent position to bring together EO data from multiple satellites necessary for marine operations. This proposal will exploit this new program by incorporating observational data into the forecast tools developed. The forecast tools developed in this proposal will be demonstrated to other potential end users in addition to those in the marine sector. Once a tool has been developed with the marine sector (who's information systems already use time varying data) it will be easier to penetrate the insurance and oil and gas sectors.
雷丁大学开展的风暴预测研究的潜在价值已得到许多行业部门的认可,包括海洋、保险以及石油和天然气。然而,如何解释和利用这些信息的问题是一个主要障碍。主要困难之一是这些行业部门只习惯处理静态信息,不知道如何处理时变的环境数据。为了鼓励这些业务部门进行所需的投资来克服这一障碍,有必要说明风暴预测信息在已经熟悉处理时变环境数据的业务部门中的潜在好处。海洋部门有这样的经验,也是对英国至关重要的工业部门。该项目将与英国海洋技术集团有限公司 ARGOSS(BMT ARGOSS,http://www.bmtargoss.com/)合作实施,该公司是一家技术咨询公司、海洋环境信息供应领域的专业提供商和领先创新者。他们已经能够处理随时间变化的数据,这使他们成为该项目的理想合作伙伴。 ESSC 与 BMT 集团有着长期的合作关系,BMT 集团在过去 9 年里提供了研究赞助计划。海事部门与保险、石油和天然气等其他部门互动,因此将项目交付成果成功实施到 BMT 系统中将向其他行业部门展示其优势。准确的风暴预报信息对于海上决策至关重要。从船舶航线到资源勘探等各种活动都需要此类信息来优化运营并防止经济和人员损失。例如,卡特里娜飓风和墨西哥湾的其他飓风多次导致当地石油和天然气工业中断,世界其他地方的运营商也经常面临类似的中断。船舶航线系统旨在避免危险天气,并找到在时间和燃料成本方面最佳的航线。该项目旨在开发从预报数据中提取风暴预报信息的方法和工具,用于海上决策。近年来,ESSC 在分析预报模型预测风暴的能力方面积累了丰富的专业知识。这项研究特别关注称为集合预测系统(EPS)的类型预测系统。 EPS 涉及从略有不同的初始状态多次运行模型,以生成预测集合,提供有关恶劣天气事件预测的不确定性/概率的信息。风暴跟踪方法提供了有用的风暴重点预报信息,而这些信息是无法从业务气象中心使用的传统数据分析方法获得的。这项 KE 提案将使 BMT ARGOSS 能够利用这些新颖的信息,改进和扩展他们可以为客户提供的服务,从而改善海上决策。除了风暴预测信息外,来自卫星的风浪地球观测 (EO) 数据对于海洋作业也至关重要。 ESSC 目前正在提议在位于哈韦尔的新国际空间创新中心 (ISIC) 开发一个应用程序,因此能够很好地汇集海洋作业所需的多颗卫星的光电数据。该提案将通过将观测数据纳入开发的预测工具来利用这一新计划。本提案中开发的预测工具将向海洋部门以外的其他潜在最终用户展示。一旦与海洋部门(其信息系统已经使用时变数据)开发出工具,渗透保险以及石油和天然气部门将变得更容易。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Management of Weather and Climate Risk in the Energy Industry
能源行业天气和气候风险管理
  • DOI:
    10.1007/978-90-481-3692-6_16
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Froude L
  • 通讯作者:
    Froude L
TIGGE: Comparison of the Prediction of Northern Hemisphere Extratropical Cyclones by Different Ensemble Prediction Systems
  • DOI:
    10.1175/2010waf2222326.1
  • 发表时间:
    2011-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lizzie S. R. Froude
  • 通讯作者:
    Lizzie S. R. Froude
TIGGE: Comparison of the Prediction of Southern Hemisphere Extratropical Cyclones by Different Ensemble Prediction Systems
TIGGE:不同集合预报系统对南半球温带气旋的预报比较
  • DOI:
    10.1175/2010waf2222457.1
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Froude L
  • 通讯作者:
    Froude L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Gurney其他文献

The effect of retro-reflectivity and reflectance of UK number plates on ANPR performance
英国车牌的回归反射率和反射率对ANPR性能的影响
Electronic Number Plate Generation for Performance Evaluation
用于性能评估的电子车牌生成
Accuracy of automatic number plate recognition (ANPR) and real world UK number plate problems
自动车牌识别 (ANPR) 的准确性和现实世界中的英国车牌问题

Robert Gurney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Gurney', 18)}}的其他基金

UK Secretariat to support BF Collaborative Research Action on Data Management and e-Infrastructure
英国秘书处支持 BF 数据管理和电子基础设施合作研究行动
  • 批准号:
    NE/L014319/1
  • 财政年份:
    2013
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Research Grant
iSTAR-D: The contribution to sea-level rise from the Amundsen Sea sector of Antarctica
iSTAR-D:南极洲阿蒙森海区对海平面上升的贡献
  • 批准号:
    NE/J00572X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Research Grant

相似国自然基金

强子三维结构分布函数的理论预言
  • 批准号:
    12375080
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
  • 批准号:
    12175016
  • 批准年份:
    2021
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
理论预言的三维碳同素异构体T-carbon的制备及其物性的实验深入研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
原子核经验平均场的理论建模不确定性及预言能力优化研究
  • 批准号:
    11975209
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
LHC上若干带喷注过程的次次领头阶预言
  • 批准号:
    11775023
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advancement in prediction of hydrodynamic characteristics under the free-surface and discharge evaluation by using the turbulence information measured by live camera images
利用实时相机图像测量的湍流信息预测自由表面下的水动力特性和流量评估的进展
  • 批准号:
    23K04043
  • 财政年份:
    2023
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
  • 批准号:
    10555024
  • 财政年份:
    2023
  • 资助金额:
    $ 10.73万
  • 项目类别:
The relationship between articulation and acoustic information: effects of formant transition on prediction of vowel perception
发音与声学信息之间的关系:共振峰转变对元音感知预测的影响
  • 批准号:
    23K17509
  • 财政年份:
    2023
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Polygenic Risk Scores for Alzheimer's Disease in Hispanic/Latinx Populations
西班牙裔/拉丁裔人群阿尔茨海默病的多基因风险评分
  • 批准号:
    10662781
  • 财政年份:
    2023
  • 资助金额:
    $ 10.73万
  • 项目类别:
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    $ 10.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了