Practical guidance on accessible statistical methods for different estimands in randomised trials

随机试验中不同估计值的可用统计方法的实用指南

基本信息

  • 批准号:
    MR/Z503770/1
  • 负责人:
  • 金额:
    $ 7.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Randomised controlled trials (RCTs) involve assigning patients at random to different treatments. Because of the random assignment, patient factors (such as age, sex, and disease stage) will, on average, be the same between treatment groups, meaning that any differences in outcomes (such as mortality) between the groups will likely be due to the treatment. Because of this, RCTs are considered the gold standard for generating high-quality evidence on whether new treatments are safe and effective.However, during most RCTs patients will experience unplanned events which mean they have to stop treatment early, switch from one treatment to another, or receive additional treatments outside of the trial. This can complicate the interpretation of results, as it is not always clear how such unplanned events are handled in the calculation of the treatment effect. For instance, the effect of starting a patient on the treatment, regardless of whether they continue taking treatment or switch to something else, could be calculated. Alternatively, the effect of actually completing a course of treatment could also be calculated. Most trials do not explicitly state which treatment effect they have calculated, which can lead to misinterpretations.New international guidelines have recently been developed by drug regulators and the pharmaceutical industry to highlight the importance of clear reporting of the treatment effect's interpretation. However, the guidance does not provide the statistical methods for calculating these treatment effects. Whilst some statistical methods have been proposed for calculating different treatment effects, these are often written in an overly technical manner, are published in academic journals unfamiliar to those running trials, and do not provide the computer code required to implement such methods. Thus, many trials use inappropriate methods to calculate treatment effects. As such, there is urgent need for guidance on appropriate, accessible, statistical methods to calculate treatment effects in RCTs.
随机对照试验 (RCT) 涉及将患者随机分配至不同的治疗方案。由于随机分配,治疗组之间的患者因素(例如年龄、性别和疾病阶段)平均而言是相同的,这意味着各组之间结果(例如死亡率)的任何差异都可能是由于治疗。因此,随机对照试验被认为是生成关于新疗法是否安全有效的高质量证据的黄金标准。然而,在大多数随机对照试验期间,患者会经历意外事件,这意味着他们必须提前停止治疗,从一种治疗切换到另一种治疗,或在试验之外接受额外的治疗。这可能会使结果的解释变得复杂,因为在计算治疗效果时并不总是清楚如何处理此类意外事件。例如,可以计算患者开始接受治疗的效果,无论他们是继续接受治疗还是转而接受其他治疗。或者,也可以计算实际完成一个疗程的效果。大多数试验没有明确说明他们计算了哪种治疗效果,这可能会导致误解。药物监管机构和制药行业最近制定了新的国际指南,以强调明确报告治疗效果解释的重要性。然而,该指南没有提供计算这些治疗效果的统计方法。虽然已经提出了一些统计方法来计算不同的治疗效果,但这些方法通常以过于技术性的方式编写,发表在进行试验的人不熟悉的学术期刊上,并且不提供实施此类方法所需的计算机代码。因此,许多试验使用不适当的方法来计算治疗效果。因此,迫切需要指导适当的、易于使用的统计方法来计算随机对照试验的治疗效果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brennan Kahan其他文献

Brennan Kahan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于ELF5分子机制研究指导的三阴乳腺癌精准治疗方法构建及应用
  • 批准号:
    32371539
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分子网络指导下海洋篮状菌中新颖杂萜的靶向分离及降脂活性研究
  • 批准号:
    82304376
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
聚多巴胺基纳米药物用于乳腺癌光声成像指导的低温光热治疗
  • 批准号:
    32301201
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
机器学习指导构建新型电解液体系实现高性能低温锂离子电池
  • 批准号:
    52303299
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向P2X7R受体PET显像并指导变构调控分子抑制神经炎症改善阿尔茨海默病小鼠认知功能研究
  • 批准号:
    82372004
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 7.9万
  • 项目类别:
    EU-Funded
SBIR Phase I: Intelligent Interactive Guidance System for Litigated Insurance Claims
SBIR第一期:保险理赔智能互动引导系统
  • 批准号:
    2329603
  • 财政年份:
    2024
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Stratification, Management, and Guidance of Hypertrophic Cardiomyopathy Patients using Hybrid Digital Twin Solutions
使用混合数字孪生解决方案对肥厚型心肌病患者进行分层、管理和指导
  • 批准号:
    10109598
  • 财政年份:
    2024
  • 资助金额:
    $ 7.9万
  • 项目类别:
    EU-Funded
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了