Understanding and Improving Electrochemical Carbon Dioxide Capture

了解和改进电化学二氧化碳捕获

基本信息

  • 批准号:
    MR/Y034244/1
  • 负责人:
  • 金额:
    $ 75.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2025
  • 资助国家:
    英国
  • 起止时间:
    2025 至 无数据
  • 项目状态:
    未结题

项目摘要

This transformative research fellowship will advance electrochemical carbon dioxide capture as a greenhouse gas mitigation technology.To limit global warming to 1.5C and avoid catastrophic climate change we must greatly reduce our emissions of greenhouse gases. To this end the UK has recently committed to net zero greenhouse gas emissions by the year 2050. Carbon dioxide capture and storage (CCS) is a critical technology that must be deployed at scale if the UK is to meet this goal. CCS is a process where carbon dioxide is first captured at point sources (industrial processes, fossil fuel power) or directly from the atmosphere, before subsequently being stored underground.State of the art CCS technology uses amine molecules to absorb carbon dioxide. Subsequently a large amount of energy must be supplied in the form of heat (or a vacuum) to regenerate the amines and release pure carbon dioxide for storage, thereby increasing the cost of CCS. The amine process also suffers from (i) limited carbon dioxide capacities, (ii) amine evaporation into the atmosphere and (iii) amine degradation in the presence of oxygen and other contaminant gases.This programme explores the use of electricity to capture and release carbon dioxide as a more energy-efficient method of CCS that can overcome the limitations of amines. In electrochemical carbon dioxide capture, the charging of an energy storage device such as a battery or a supercapacitor causes the selective absorption of carbon dioxide. When the device is discharged, pure carbon dioxide is released (for subsequent storage), and much of the energy supplied during charging is recovered. Initial work suggests that this technology may be more energy-efficient than existing approaches, and there is still vast room for improvement, especially if the molecular mechanisms of capture can be understood and manipulated.We will (i) advance the understanding of electrochemical carbon dioxide capture and (ii) discover new materials and devices that capture carbon dioxide more efficiently. Specifically we will focus on electrochemical carbon dioxide capture by supercapacitors. We will measure the amount of carbon dioxide that can be captured by these devices and we will optimise the electrode and electrolyte materials to improve performance.A proper understanding of the molecular mechanism of electrochemical carbon dioxide capture may lead to breakthroughs for this technology. A key thrust of the programme is therefore mechanistic studies of the molecular-level capture mechanism. We will use a suite of experimental techniques to study the chemical structures of the electrode materials, and we will correlate these structures with their carbon capture properties. We will develop nuclear magnetic resonance studies that allow the molecular form of the bound carbon dioxide to be determined at different stages of the capture process.Our mechanistic studies will inform the design and synthesis of improved materials for electrochemical carbon dioxide capture. We will synthesise the next generation of materials with (i) larger carbon dioxide uptake capacities, (ii) lower energy requirements for regeneration and (iii) faster uptake rates. New technology generated by this work will be prototyped and developed into flow systems. The developed technology will generate clean economic growth and will help the UK meet its 2050 net-zero emissions target. The research background of ACF combined with the assembled team of partners and excellent institutional support will lead to new knowledge and technology that will make the UK world-leading in electrochemical carbon dioxide capture
这项变革性的研究奖学金将推动电化学二氧化碳捕获作为一种温室气体减排技术。为了将全球变暖限制在 1.5 摄氏度并避免灾难性的气候变化,我们必须大幅减少温室气体的排放。为此,英国最近承诺到 2050 年实现温室气体净零排放。二氧化碳捕获和封存 (CCS) 是一项关键技术,如果英国要实现这一目标,就必须大规模部署。 CCS 是一种首先在点源(工业过程、化石燃料发电)或直接从大气中捕获二氧化碳的过程,然后将其储存在地下。最先进的 CCS 技术使用胺分子来吸收二氧化碳。随后必须以热量(或真空)的形式提供大量能量来再生胺并释放纯二氧化碳进行储存,从而增加了CCS的成本。胺工艺还面临以下问题:(i) 二氧化碳容量有限,(ii) 胺蒸发到大气中,以及 (iii) 胺在氧气和其他污染物气体存在下降解。该计划探讨了利用电力来捕获和释放碳二氧化碳作为一种更节能的 CCS 方法,可以克服胺的局限性。在电化学二氧化碳捕获中,电池或超级电容器等能量存储装置的充电会导致二氧化碳的选择性吸收。当设备放电时,纯二氧化碳被释放(用于随后的存储),并且充电期间提供的大部分能量被回收。初步工作表明,这项技术可能比现有方法更节能,并且仍然有巨大的改进空间,特别是如果可以理解和操纵捕获的分子机制。我们将 (i) 推进对电化学二氧化碳的理解捕获和(ii)发现更有效地捕获二氧化碳的新材料和设备。具体来说,我们将重点关注超级电容器的电化学二氧化碳捕获。我们将测量这些设备可以捕获的二氧化碳量,并优化电极和电解质材料以提高性能。正确理解电化学二氧化碳捕获的分子机制可能会带来该技术的突破。因此,该计划的一个关键目标是分子水平捕获机制的机械研究。我们将使用一套实验技术来研究电极材料的化学结构,并将这些结构与其碳捕获特性相关联。我们将开展核磁共振研究,以便在捕获过程的不同阶段确定结合二氧化碳的分子形式。我们的机理研究将为电化学二氧化碳捕获的改进材料的设计和合成提供信息。我们将合成下一代材料,该材料具有(i)更大的二氧化碳吸收能力,(ii)更低的再生能源需求以及(iii)更快的吸收率。这项工作产生的新技术将被原型化并开发成流动系统。所开发的技术将带来清洁的经济增长,并将帮助英国实现 2050 年净零排放目标。 ACF 的研究背景与合作伙伴团队和优秀的机构支持相结合,将带来新的知识和技术,使英国在电化学二氧化碳捕获领域处于世界领先地位

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Forse其他文献

Carbon electrodes for energy storage: general discussion
  • DOI:
    10.1039/c4fd90026j
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yury Gogotsi;Dirk Guldi;Richard McCreery;Chi-Chang Hu;Céline Merlet;François Béguin;Laurence Hardwick;Elzbieta Frackowiak;Julie Macpherson;Alexander Forse;George Zheng Chen;Katherine Holt;Robert Dryfe;Heisi Kurig;Surbhi Sharma;Patrick R. Unwin;Thomas Rabbow;Wanjing Yu;Fulian Qiu;Fernanda Juarez;Christopher Sole;Boris Dyatkin;Keith Stevenson;Yong Cao;Nico Cousens;Asa Noofeli
  • 通讯作者:
    Asa Noofeli

Alexander Forse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Forse', 18)}}的其他基金

Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
  • 批准号:
    EP/X042693/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Research Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/T043024/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Fellowship
Charged Adsorbents for Capture of Carbon Dioxide Directly from Air
用于直接从空气中捕获二氧化碳的带电吸附剂
  • 批准号:
    EP/V048090/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Research Grant

相似国自然基金

钠金属负极人工SEI自适应结构的构建及电化学性能改善机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于电化学-铁电/压电耦合效应改善高镍正极材料的电化学性能
  • 批准号:
    22179011
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
氧空位改善Li4Ti5O12电化学性能的机理研究
  • 批准号:
    21965034
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
金属掺杂对镍锌电池LDH正极电化学性能的改善机制研究
  • 批准号:
    21905300
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
生物电化学系统改善低阶煤生物降解特性和甲烷化的机理研究
  • 批准号:
    21908118
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving the reproducibility of manufacturing a polymer-based electrochemical sensor
提高聚合物电化学传感器制造的再现性
  • 批准号:
    10073816
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Collaborative R&D
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/T043024/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Fellowship
Understanding and Improving Electrochemical Carbon Capture by Supercapacitors
了解和改进超级电容器的电化学碳捕获
  • 批准号:
    2482377
  • 财政年份:
    2020
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Studentship
UNS: Improving Energy Density of Layered Vanadium Pentoxide Nanostructure for Aqueous Electrochemical Energy Storage
UNS:提高用于水相电化学储能的层状五氧化二钒纳米结构的能量密度
  • 批准号:
    1511014
  • 财政年份:
    2015
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Standard Grant
Improving Additive Manufactured Metal Parts Using Laser Surface Finishing and Electrochemical Machining (IMPULSE)
使用激光表面精加工和电化学加工改进增材制造的金属零件 (IMPULSE)
  • 批准号:
    101481
  • 财政年份:
    2013
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了