Simulating Urban Air Pollution In The Lab

在实验室模拟城市空气污染

基本信息

  • 批准号:
    MR/Y020014/1
  • 负责人:
  • 金额:
    $ 75.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

There has been increased evidence in recent years about the health risks of air pollution, which contribute to millions of deaths globally and tens of thousands of UK deaths annually. This research is about improving our ability to model urban air pollution and wind patterns to inform policy affecting people's health and wellbeing. These scientific advances will be achieved by applying advanced aerospace approaches including scale-model aerodynamic testing, in-situ measurements in real-life buildings, and data-driven methods coupling measurements to computational fluid dynamics models. These novel approaches promise to reveal understanding of the dispersion and transport of pollutants from industrial and urban sources and advance our ability to monitor, model, and control airborne pollution at the local and city scales critical for urban flows. These techniques allow us to fill a gap in our knowledge about the influence of local flow patterns to pedestrian comfort, building optimisation, air quality, and macroscale weather prediction. The scale-model aerodynamics experiments will focus on using state-of-the-art optical diagnostic tools to reveal the wind patterns that are the mechanisms of pollution dispersion in and around building models. In the first part of this fellowship, novel experiments were developed using scale models in a recirculating water tunnel with dye as a proxy for air pollution. These experiments successfully replicated atmospheric boundary layer conditions and highlighted the importance of tall buildings in enhancing vertical transport of ground-level pollution out of the urban canopy. In this extension, particle tracking techniques and transparent city models will be employed to reveal the dynamics of the flow features at street level and within urban canyons.The lab measurements will be supplemented by in-situ measurements of real-life buildings. This is made possible by an interdisciplinary collaboration using University of Southampton campus buildings. These measurements will be an opportunity to validate models and will feed into the new data-driven approaches that will be used to analyse the results and translate them into industry impact. Data-driven methods aim to reduce the complexity of the turbulent flow models, fill in missing information, and reveal physics of the flow. Urban aerodynamics provides a novel application well-suited to this approach as key flow features are expected to be anchored by the terrain and novel as both velocity and concentration properties of the flow need to be captured in the physics.Impact to industry will continue to be fostered by working closely with the wind engineering community. Impact to policy will continue to be supported through case studies simulating air pollution in the city of Southampton and contributing to national strategy documents. The public outreach made possible through this fellowship also highlights that aerodynamics is not only relevant to aeroplanes and race cars and that a diversity of people can work in this field, showcasing "urban aerodynamics" as an emerging field of research.This fellowship extension is an opportunity to build on these foundations to broaden the inter-disciplinary applicability of the new science we uncover and translate the results into further policy-relevant and industry-relevant impact.
近年来,越来越多的证据表明空气污染对健康造成风险,空气污染每年导致全球数百万人死亡,英国每年有数万人死亡。这项研究旨在提高我们对城市空气污染和风型进行建模的能力,为影响人们健康和福祉的政策提供信息。这些科学进步将通过应用先进的航空航天方法来实现,包括比例模型空气动力学测试、现实建筑中的现场测量以及将测量与计算流体动力学模型耦合的数据驱动方法。这些新颖的方法有望揭示对工业和城市来源污染物的扩散和传输的理解,并提高我们在对城市流动至关重要的地方和城市尺度上监测、建模和控制空气污染的能力。这些技术使我们能够填补有关当地流动模式对行人舒适度、建筑优化、空气质量和宏观天气预报影响的知识空白。比例模型空气动力学实验将侧重于使用最先进的光学诊断工具来揭示风型,即建筑模型内部和周围污染扩散的机制。在该研究金的第一部分中,使用循环水隧道中的比例模型开发了新颖的实验,并用染料作为空气污染的替代物。这些实验成功地复制了大气边界层条件,并强调了高层建筑在增强地面污染物垂直输送出城市冠层方面的重要性。在此扩展中,将采用粒子跟踪技术和透明城市模型来揭示街道层面和城市峡谷内的流动特征的动态。实验室测量将得到现实建筑的现场测量的补充。这是通过使用南安普顿大学校园建筑的跨学科合作实现的。这些测量将成为验证模型的机会,并将输入新的数据驱动方法,用于分析结果并将其转化为行业影响。数据驱动方法旨在降低湍流模型的复杂性,填充缺失的信息并揭示流动的物理特性。城市空气动力学提供了一种非常适合这种方法的新颖应用,因为关键的流动特征预计将由地形确定,并且由于需要在物理中捕获流动的速度和浓度特性,因此新颖的应用。对工业的影响将继续通过与风工程界的密切合作来促进。将继续通过模拟南安普敦市空气污染的案例研究来支持对政策的影响,并为国家战略文件做出贡献。通过该奖学金进行的公众宣传还强调了空气动力学不仅与飞机和赛车相关,而且各种各样的人都可以在这个领域工作,展示了“城市空气动力学”作为一个新兴的研究领域。我们有机会在这些基础上扩大我们发现的新科学的跨学科适用性,并将结果转化为进一步的政策相关和行业相关影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christina Vanderwel其他文献

Variability of physical meteorology in urban areas at different scales: implications for air quality
  • DOI:
    10.1039/d0fd00098a
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Denise Hertwig;Sue Grimmond;Simone Kotthaus;Christina Vanderwel;Hannah Gough;Martial Haeffelin;Alan Robins
  • 通讯作者:
    Alan Robins

Christina Vanderwel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christina Vanderwel', 18)}}的其他基金

Simulating urban air pollution in the lab
在实验室模拟城市空气污染
  • 批准号:
    MR/S015566/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Fellowship

相似国自然基金

城市群土地利用变化对空气质量影响的非线性机制及其优化决策模拟
  • 批准号:
    42361042
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于高密度观测和WRF-STILT模拟的城市空气污染过程及源排放研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空气质量协同的城市CO2高精度模拟分析方法研究
  • 批准号:
    42177096
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
消减空气颗粒物的城市灰绿空间“源—流—汇”耦合模拟研究
  • 批准号:
    52178041
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
城市高架道路对微尺度湍流和空气污染物扩散的影响
  • 批准号:
    41805102
  • 批准年份:
    2018
  • 资助金额:
    26.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Community-Soil-Air-Water: A Geoscience Learning Ecosystem for Urban Environments
REU 网站:社区-土壤-空气-水:城市环境的地球科学学习生态系统
  • 批准号:
    2348995
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Standard Grant
Project 1: Greenspace to build resilience to climate change impacts on health: The good, the bad, and the future
项目 1:绿色空间,增强抵御气候变化对健康影响的能力:好的、坏的和未来
  • 批准号:
    10835396
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
Transcriptomic and epigenetic mechanisms of lead (Pb)-induced neurobehavioral disease in aged populations and subsequent generations
铅(Pb)诱导的老年人群及后代神经行为疾病的转录组和表观遗传机制
  • 批准号:
    10577926
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
Urban planning, siting of air pollution sources, and asthma disparities
城市规划、空气污染源选址和哮喘差异
  • 批准号:
    10567693
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
Integration of electronic medical records and neighborhood contextual indicators into machine learning strategies for identifying pregnant individuals at risk of depression in underserved communities
将电子病历和社区背景指标整合到机器学习策略中,以识别服务欠缺社区中面临抑郁风险的孕妇
  • 批准号:
    10741143
  • 财政年份:
    2023
  • 资助金额:
    $ 75.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了