Directed and adaptive evolution of photosynthetic systems

光合系统的定向和适应性进化

基本信息

  • 批准号:
    MR/Y011635/1
  • 负责人:
  • 金额:
    $ 75.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Photosystems are the complex molecular assemblies of photosynthesis, they generate the energy that sustain nearly all the biosphere, directly powering the global fixation of about a hundred gigatons of carbon dioxide annually. Photosynthesis uses two photosystems working in series: photosystem II and photosystem I. Photosystem II harvests light to power the oxidation and decomposition of water into protons, electrons, and the oxygen we breathe. Photosystem I harvests light to generate the power needed to drive metabolic reactions, importantly, but not exclusively, carbon dioxide fixation. These properties make the photosystems amongst the most powerful enzymes in the history of life, both capable of driving their own difficult chemistry using light.My long-term vision is to use evolution-based methods to completely redesign the photosystems so that we can harness their properties to do useful chemistry beyond their naturally evolved function. I want to develop a technological platform that enables exquisite control of both photosystems to achieve bespoke multi-step light-driven oxidative or reductive biocatalysis. Eventually, I envision this platform linked to a research facility that allows for the rapid and high-throughput purification, characterisation, and production of these novel photosystems for a broad range of applications, from bioremediation to precision chemistry, all driven by light. Therefore, this technology can benefit and impact the biotechnology and chemical industry by creating new ways to perform clean chemical reactions.In this extension, I continue the work that was started in the first stage of the fellowship. My lab is currently developing, optimising, and characterising directed evolution approaches that target photosystem II to change its functional properties beyond its naturally evolved function. Directed evolution is an extremely versatile approach that is used to change the traits, or the activity of a given enzyme by exploiting evolution. It can be done simply by subjecting an organism through repeated cycles of selection under the conditions that favour the desired traits or by screening for the desired function, it can be enhanced by turbocharging mutational rates (hypermutation), it can be focused on a single gene of interest, parts of a gene, or multiple genes. Hypermutation can be done in vitro, where the genes are mutated in the test tube; or in vivo, where hypermutation occurs as the cells divide and replicate. My lab has a working in vitro system that we have already used to isolate several photosystem II variants harbouring a range of mutations and are about to deploy and in vivo CRISPR-based hypermutation system.The idea of applying directed evolution to engineer novel photosystems is without precedent. While directed evolution is a somewhat of a mature technology, it has not been extensively applied to complex enzymatic systems like the photosystems, if at all. In addition, the development of directed evolution approaches in photosynthetic organisms also lags compared with non-photosynthetic systems like E. coli and yeast. While an ambitious and challenging research endeavour, I've demonstrated that photosystem II remains evolvable and plastic in nature thanks to its structural modularity. Therefore, our approach harnesses this natural adaptability using directed evolution but accelerated to lab timescales.The overarching aim of this fellowship is to demonstrate that photosystem II is amenable to directed evolution, and to begin developing hypermutation and selection approaches to drive its evolution. The ultimate objective of this extension is to deliver proof-of-concept novel photosystems, or strains of cyanobacteria harbouring these novel photosystems, that could pave the wave towards scaling up and translating this vision into viable green biotechnologies.
光系统是光合作用的复杂分子组装体,它们产生的能量几乎可以维持整个生物圈,直接为全球每年固定约一百亿吨二氧化碳提供动力。光合作用使用两个串联工作的光系统:光系统 II 和光系统 I。光系统 II 收集光,为水的氧化和分解提供动力,转化为质子、电子和我们呼吸的氧气。光系统 I 收集光来产生驱动代谢反应所需的能量,重要的是但不仅限于二氧化碳固定。这些特性使光系统成为生命史上最强大的酶之一,它们都能够利用光驱动它们自己的困难化学反应。我的长期愿景是使用基于进化的方法完全重新设计光系统,以便我们能够利用它们的具有超出其自然进化功能的有用化学性质。我想开发一个技术平台,能够精确控制两个光系统,以实现定制的多步光驱动氧化或还原生物催化。最终,我设想这个平台与一个研究设施相连,可以快速、高通量地纯化、表征和生产这些新颖的光系统,用于从生物修复到精密化学的广泛应用,所有这些都由光驱动。因此,这项技术可以通过创造执行清洁化学反应的新方法来使生物技术和化学工业受益并产生影响。在这个扩展中,我继续在奖学金第一阶段开始的工作。我的实验室目前正在开发、优化和表征定向进化方法,以光系统 II 为目标,改变其功能特性,超越其自然进化的功能。定向进化是一种极其通用的方法,用于通过利用进化来改变给定酶的性状或活性。它可以简单地通过在有利于所需性状的条件下对生物体进行重复的选择循环或通过筛选所需的功能来完成,它可以通过涡轮增压突变率(超突变)来增强,它可以集中于单个基因感兴趣的基因的一部分或多个基因。超突变可以在体外进行,即基因在试管中发生突变;或者在体内,当细胞分裂和复制时会发生超突变。我的实验室有一个有效的体外系统,我们已经用它来分离出几种含有一系列突变的光系统 II 变体,并且即将部署基于 CRISPR 的体内超突变系统。应用定向进化来设计新型光系统的想法是不存在的。先例。虽然定向进化在某种程度上是一项成熟的技术,但它尚未广泛应用于像光系统这样的复杂酶系统(如果有的话)。此外,与大肠杆菌和酵母等非光合系统相比,光合生物定向进化方法的发展也滞后。虽然这是一项雄心勃勃且具有挑战性的研究工作,但我已经证明,由于其结构模块化,光系统 II 本质上仍然是可进化和可塑的。因此,我们的方法利用定向进化来利用这种自然适应性,但加速到实验室时间尺度。该奖学金的首要目标是证明光系统 II 适合定向进化,并开始开发超突变和选择方法来驱动其进化。这一扩展的最终目标是提供概念验证的新型光系统,或含有这些新型光系统的蓝藻菌株,这可以为扩大规模并将这一愿景转化为可行的绿色生物技术铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tanai Cardona Londono其他文献

Tanai Cardona Londono的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tanai Cardona Londono', 18)}}的其他基金

Directed Evolution of Photosystem Chemistry
光系统化学的定向进化
  • 批准号:
    MR/T017546/2
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Fellowship
Directed Evolution of Photosystem Chemistry
光系统化学的定向进化
  • 批准号:
    MR/T017546/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Fellowship

相似国自然基金

北极鳕科鱼类食性适应性进化研究
  • 批准号:
    32370565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
城市化效应影响下中华蟾蜍个体大小变异及其适应性进化机制
  • 批准号:
    32371703
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
血凝素糖基化模式调节H9N2亚型禽流感病毒适应性进化的分子基础
  • 批准号:
    32302862
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水蚤对环境变化的适应性进化和响应机制:基于沉积物DNA的研究
  • 批准号:
    32371692
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基因的获得和丢失驱动豆科根瘤菌共生固氮适应性进化
  • 批准号:
    32300512
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Intravitreal gene therapy for inherited retinal disease
遗传性视网膜疾病的玻璃体内基因治疗
  • 批准号:
    10660784
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
Improving phage-based medicine with immunoengineering
通过免疫工程改进基于噬菌体的医学
  • 批准号:
    10572011
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
RNA Recombination in Coronaviruses
冠状病毒中的 RNA 重组
  • 批准号:
    10585621
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
Rapid antibody screening systems to identify and engineer antiviral protection
用于识别和设计抗病毒保护的快速抗体筛选系统
  • 批准号:
    10580028
  • 财政年份:
    2022
  • 资助金额:
    $ 75.59万
  • 项目类别:
Rapid antibody screening systems to identify and engineer antiviral protection
用于识别和设计抗病毒保护的快速抗体筛选系统
  • 批准号:
    10353350
  • 财政年份:
    2022
  • 资助金额:
    $ 75.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了