Exploration of cortical structure and function in human infancy with advanced MRI methods

利用先进的 MRI 方法探索人类婴儿期皮质结构和功能

基本信息

  • 批准号:
    MR/Y009665/1
  • 负责人:
  • 金额:
    $ 272.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Brain processing in the outermost layer of the brain, known as the cortex, is essential for everyday behaviour including how we interact with the world around us and other people. Abnormalities in the shape and composition of the cortex and its activity, are found in many illnesses including epilepsy, learning difficulties, and mental health disorders. These abnormalities likely arise at the start of our lives, when the cortex is rapidly developing and thus very senstive to diseases or injuries, especially those which compromise its supply of oxygen during development. However, current methods like ultrasound or standard MRI scans used in hospitals cannot provide enough detail to identify how these cortical abnormalities arise or their exact relationship to disease processes. The goal of this research is therefore to use the latest advances in MRI scanning to learn how abnormal cortical development can arise in early human life and how this can lead to difficulties with behaviour and learning in later childhood. This will be achieved by studying 90 babies from birth up to 2 and half years of age. 60 of these babies are known to be at high risk for having altered development of their cortex throughout their lives, most likely to a lack of oxygen delivered to the cortex during the crucial time leading up to the normal time of birth (through being born prematurely or having a genetic heart disease). 30 will be healthy babies born at full term who should have normal development. By studying these 3 groups, we will not only gain new information about how the cortex normally forms and is affected by diseases, but also potentially identify new targets for treatments.The recruited babies will be studied soon after birth using an ultra-high field (7 Tesla) MRI scanner, which provides far more detailed images than standard MRI scanners including extra information about the developing cortex's shape, blood supply, oxygen levels, and chemical levels. This complex information will then be related to the cortex's activity which is rapidly changing and maturing in the time around birth. Crucially, these will be the first images acquired from babies using this type of scanner in the UK and so will represent entirely new knowledge.As toddlers, children develop new behaviours which allow them to understand the world around them including interact with other people. How the brain changes to allow this is happen is not known, partly because it is extremely challenging to study children at this age, especially inside an MRI scanner. To overcome this, we have developed a new virtual reality (VR) system that provides a fun and immersive experience for a child whilst having a MRI scan, and so for the first time, can allow detailed pictures of the brain to be acquired from a child whilst they are awake and playing in the VR environment. This will allow us to compare how the cortex as a baby is related to its structure and activity in later childhood using computer modelling and machine learning. It will also give us completely new information about how the cortex's activity allows children to interact with the world around them. Together, the results of this research will provide important information about how the human cortex develops at the start of our lives in unprecedented detail, and new knowledge about how it allows us to interact with other people and the environment in childhood. I will openly share this information and the methods so that they can be used by the scientific community more widely to answer fundamental questions about the cortex and its development. This new knowledge will help doctors and scientists identify which children may have difficulties later in life, devise and start new treatments to prevent or treat abnormalities in their cortex, and will help to understand how they may cause conditions such as learning difficulties, autism spectrum conditions, and mental health disorders.
大脑最外层(称为皮质)的大脑处理对于日常行为至关重要,包括我们如何与周围的世界和其他人互动。大脑皮层的形状和组成及其活动的异常存在于许多疾病中,包括癫痫、学习困难和精神健康障碍。这些异常可能出现在我们生命之初,此时皮质正在快速发育,因此对疾病或损伤非常敏感,尤其是那些在发育过程中损害其氧气供应的疾病或损伤。然而,目前医院使用的超声波或标准 M​​RI 扫描等方法无法提供足够的细节来确定这些皮质异常是如何产生的或其与疾病过程的确切关系。因此,这项研究的目标是利用 MRI 扫描的最新进展来了解人类早期生命中皮质发育异常如何发生,以及这如何导致儿童后期的行为和学习困难。这是通过研究 90 名从出生到 2 岁半的婴儿来实现的。据了解,其中 60 名婴儿一生中皮质发育发生改变的风险很高,最有可能是由于在正常出生前的关键时期(通过早产)缺乏输送到皮质的氧气。或患有遗传性心脏病)。 30岁是足月出生的健康婴儿,发育正常。通过研究这三组,我们不仅可以获得有关大脑皮层如何正常形成以及受疾病影响的新信息,而且还可能确定新的治疗目标。招募的婴儿将在出生后不久使用超高场进行研究( 7 Tesla)MRI 扫描仪,它提供比标准 MRI 扫描仪更详细的图像,包括有关发育中皮层形状、血液供应、氧气水平和化学水平的额外信息。这些复杂的信息将与大脑皮层的活动相关,而大脑皮层的活动在出生前后迅速变化和成熟。至关重要的是,这些将是英国使用此类扫描仪从婴儿身上获取的第一批图像,因此将代表全新的知识。 作为幼儿,孩子们会发展出新的行为,使他们能够了解周围的世界,包括与其他人互动。大脑如何变化以允许这种情况发生尚不清楚,部分原因是研究这个年龄段的儿童极具挑战性,尤其是在核磁共振扫描仪内。为了克服这个问题,我们开发了一种新的虚拟现实 (VR) 系统,该系统在进行 MRI 扫描时为儿童提供有趣且身临其境的体验,因此首次可以从当孩子醒着并在 VR 环境中玩耍时。这将使我们能够使用计算机建模和机器学习来比较婴儿时期的皮质与其在童年后期的结构和活动的关系。它还将为我们提供关于皮层活动如何让儿童与周围世界互动的全新信息。总之,这项研究的结果将以前所未有的细节提供关于人类皮层在生命之初如何发育的重要信息,以及关于它如何让我们在童年时期与他人和环境互动的新知识。我将公开分享这些信息和方法,以便科学界更广泛地使用它们来回答有关皮层及其发育的基本问题。这些新知识将帮助医生和科学家识别哪些儿童在以后的生活中可能会遇到困难,设计和开始新的治疗方法来预防或治疗他们的大脑皮层异常,并有助于了解它们如何导致学习困难、自闭症谱系疾病等疾病。和精神健康障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomoki Arichi其他文献

Tomoki Arichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomoki Arichi', 18)}}的其他基金

MRC Transition Support Award CSF Tomoki Arichi
MRC 过渡支持奖 CSF Tomoki Arichi
  • 批准号:
    MR/V036874/1
  • 财政年份:
    2021
  • 资助金额:
    $ 272.5万
  • 项目类别:
    Fellowship
Automated Fetal and Neonatal Movement Assessment for Very Early Health Assessment
用于极早期健康评估的自动胎儿和新生儿运动评估
  • 批准号:
    EP/S013601/1
  • 财政年份:
    2019
  • 资助金额:
    $ 272.5万
  • 项目类别:
    Research Grant
Development of brain activity and motor control in early human life
人类早期大脑活动和运动控制的发展
  • 批准号:
    MR/P008712/1
  • 财政年份:
    2017
  • 资助金额:
    $ 272.5万
  • 项目类别:
    Fellowship

相似国自然基金

靶向糖皮质激素膜受体GPR97减弱糖皮质激素副作用的药物发现、结构基础及机制研究
  • 批准号:
    32301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丘脑皮质环路的微结构重塑和动态功能网络介导卒中后失语症命名功能康复的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于结构的G蛋白偶联受体的药物设计:神经肽FF和黑素皮质素受体
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
基于生物切片技术和仿生矿化策略的骨单位分级结构构建与皮质骨修复性能研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
废用引起的皮质骨微纳尺度结构变化和组织粘弹性相关关系研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

Cortical Circuits Underlying Functional Recovery Following Stroke
中风后功能恢复的皮层回路
  • 批准号:
    10638607
  • 财政年份:
    2023
  • 资助金额:
    $ 272.5万
  • 项目类别:
Characterization of cortical neuronal subtypes in cocaine self-administration
可卡因自我给药皮质神经元亚型的特征
  • 批准号:
    10815221
  • 财政年份:
    2023
  • 资助金额:
    $ 272.5万
  • 项目类别:
Development and characterization of an inducible model for myocilin POAG
肌纤蛋白 POAG 诱导模型的开发和表征
  • 批准号:
    10661911
  • 财政年份:
    2023
  • 资助金额:
    $ 272.5万
  • 项目类别:
Modulating PTOA development with parathyroid hormone
用甲状旁腺激素调节 PTOA 发育
  • 批准号:
    10737336
  • 财政年份:
    2023
  • 资助金额:
    $ 272.5万
  • 项目类别:
Fear learning-related reconfiguration of local and large-scale cortical networks
局部和大规模皮层网络的恐惧学习相关重构
  • 批准号:
    10722925
  • 财政年份:
    2023
  • 资助金额:
    $ 272.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了