The IMMaged study: understanding the balance of immunity and immune disease in an aged immune system
IMMed 研究:了解衰老免疫系统中免疫与免疫疾病的平衡
基本信息
- 批准号:MR/Y001559/1
- 负责人:
- 金额:$ 173.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our immune systems change as we get older, resulting in weaker protective responses to vaccines and infections and at the same time increasing 'autoimmune' responses in which the body reacts against itself, causing unhelpful inflammation or disease. We know these changes occur, but not what makes them happen or how we might improve them when they do. A better understanding of immune ageing could allow us to design better vaccines, identify who needs them most or better treat inflammatory disease in older people. To understand how the immune system works differently in older people, it is first necessary to describe the changes occurring: in other words, to find out what 'normal' ageing looks like. As part of an international effort, we have carefully collected and measured many different aspects of the immune system in thousands of people to describe what changes occur. This included measures of different cell types and protein levels in the blood alongside levels of protection against infection and against the body's own proteins (the 'autoreactive' responses). From this study we found that immune ageing occurred much more rapidly after 70 years of age and also changed at different rates in different people. This meant that people of a given age could have very different immune ages. We also found that their immune age was linked to their lifespan, suggesting that immune age might be critical for keeping us healthy in later years. Of all the immune changes we measured, only a few were strongly linked to immune age. We have now used this information to design a much more detailed experiment, aiming to understand more about what might be responsible for immune ageing. We want to understand in detail what happens in immune ageing. To do this, we plan to focus on people who have the same age, but very different immune ages. We want to understand not only what is different between them, but also how their immune systems respond differently to the same 'challenge'. To do this we will identify two groups of people with similar ages but very different immune ages and take blood samples before, during and after they receive their standard influenza and COVID booster vaccinations: we only need take blood samples while they have booster shots just as they would do in any case. From the blood samples we will purify a range of different immune cell types - both those we have linked to immune age and others likely to contribute. We can then analyse these immune cell populations in minute detail, measuring for each individual cell which genes are switched on, which proteins are present and the type of antibody or immune receptors they use. This is helpful as the level of detailed information generated allows us to identify the cells linked to 'older' immune responses, even those we may not have suspected were important (as we can measure all genes in every cell). We can also use this information to work out how cells are responding differently in the two groups of people. We can do this at each timepoint of the experiment (for example, before they get their vaccine) but we can also look at changes occurring over time, comparing before and after vaccination. After they receive their vaccine we will measure how effective a response they have made and also the extent to which they have produced an 'incorrect' response against their own body's proteins. By putting together all of this information we aim to identify changes in immune ageing that control the balance between helpful and harmful immunity. We believe this is the first step towards a better understanding of how medications should be used in the elderly to influence that balance: improving older peoples' ability to fight infection, cancer and to respond to vaccines and improving our ability to treat inflammatory disease also. This could have a huge impact on the duration and quality of life in ageing.
随着年龄的增长,我们的免疫系统会发生变化,导致对疫苗和感染的保护性反应减弱,同时增加“自身免疫”反应,即身体对自身产生反应,导致无益的炎症或疾病。我们知道这些变化会发生,但不知道是什么导致它们发生,也不知道它们发生时我们如何改进它们。更好地了解免疫衰老可以让我们设计出更好的疫苗,确定谁最需要疫苗,或者更好地治疗老年人的炎症性疾病。要了解老年人的免疫系统如何以不同的方式工作,首先有必要描述发生的变化:换句话说,要找出“正常”衰老的样子。作为国际努力的一部分,我们仔细收集并测量了数千人免疫系统的许多不同方面,以描述发生的变化。这包括测量血液中不同细胞类型和蛋白质水平,以及针对感染和身体自身蛋白质(“自身反应”反应)的保护水平。通过这项研究,我们发现 70 岁以后免疫衰老发生得更快,并且不同人的变化速度也不同。这意味着特定年龄的人可能有非常不同的免疫年龄。我们还发现他们的免疫年龄与他们的寿命有关,这表明免疫年龄可能对于我们晚年保持健康至关重要。在我们测量的所有免疫变化中,只有少数与免疫年龄密切相关。我们现在利用这些信息设计了一个更详细的实验,旨在更多地了解可能导致免疫衰老的原因。我们想详细了解免疫衰老过程中发生的情况。为此,我们计划重点关注年龄相同但免疫年龄差异很大的人。我们不仅想了解它们之间有什么不同,还想了解它们的免疫系统如何对相同的“挑战”做出不同的反应。为此,我们将识别两组年龄相似但免疫年龄差异很大的人,并在他们接受标准流感和新冠加强疫苗接种之前、期间和之后采集血液样本:我们只需要在他们接种加强疫苗时采集血液样本,就像无论如何他们都会这么做。我们将从血液样本中纯化一系列不同的免疫细胞类型 - 包括我们与免疫年龄相关的细胞和其他可能起作用的细胞。然后,我们可以详细分析这些免疫细胞群,测量每个单独的细胞打开了哪些基因、存在哪些蛋白质以及它们使用的抗体或免疫受体的类型。这很有帮助,因为生成的详细信息水平使我们能够识别与“旧”免疫反应相关的细胞,甚至是那些我们可能不认为重要的细胞(因为我们可以测量每个细胞中的所有基因)。我们还可以利用这些信息来弄清楚两组人的细胞反应如何不同。我们可以在实验的每个时间点(例如,在他们接种疫苗之前)执行此操作,但我们也可以查看随着时间的推移发生的变化,比较接种疫苗之前和之后。在他们接种疫苗后,我们将测量他们做出的反应有多有效,以及他们对自己身体的蛋白质产生“错误”反应的程度。通过汇总所有这些信息,我们的目标是确定免疫衰老的变化,从而控制有益免疫和有害免疫之间的平衡。我们相信,这是更好地了解如何在老年人中使用药物来影响这种平衡的第一步:提高老年人抵抗感染、癌症和疫苗反应的能力,并提高我们治疗炎症性疾病的能力。这可能会对老龄化过程中的生活持续时间和质量产生巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eoin McKinney其他文献
Using Machine Learning to Individualize Treatment Effect Estimation: Challenges and Opportunities
使用机器学习进行个性化治疗效果估计:挑战和机遇
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alicia Curth;Richard W. Peck;Eoin McKinney;James Weatherall;Mihaela van der Schaar - 通讯作者:
Mihaela van der Schaar
Eoin McKinney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于物理解释的深度学习云对流参数化方案研究
- 批准号:42305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于元知识学习的可解释图像理解方法在肺癌组织形态学与驱动基因突变病理辅助诊断中的应用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于表征与演绎偏置联合学习的视频人群交互行为理解
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于动态超图学习的遥感视频场景语义理解研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向开放域视觉理解的少样本推广学习
- 批准号:62272494
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 173.16万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 173.16万 - 项目类别:
A study on methods for evaluating road visibility conditions throughout the day using edge computing
利用边缘计算评估全天道路能见度状况的方法研究
- 批准号:
22KJ0072 - 财政年份:2023
- 资助金额:
$ 173.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
- 批准号:
10679154 - 财政年份:2023
- 资助金额:
$ 173.16万 - 项目类别:
Understanding the Impact of Vaping Prevention Ads on Adolescents and Young Adults
了解电子烟预防广告对青少年和年轻人的影响
- 批准号:
10665870 - 财政年份:2023
- 资助金额:
$ 173.16万 - 项目类别: