Digital Hydraulic Fluid Power Technologies for Decarbonising Off-road Vehicles

用于越野车脱碳的数字液压流体动力技术

基本信息

  • 批准号:
    MR/X034887/1
  • 负责人:
  • 金额:
    $ 203.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Climate change is the most pressing environmental challenge of our time. The transport sector was the largest contributor to UK greenhouse gas emissions (GHG) in 2020, with an overall contribution of 24% [1]. While decarbonisation of on-road transportation, such as cars, buses and trucks, is well underway by employing electric alternatives, the important sector of off-road vehicles is technologically far behind and represents a major contributor to GHG emissions. In 2018, the total GHGs emission of UK off-road vehicles was 11,043 kilotonnes [2], which is equivalent to the GHGs emission from 12.2 Giga pounds of coal burned, or the annual energy use of 1.4m homes' [3]. Hydraulic fluid power transmission is widely used in off-road vehicles, such as construction and agricultural machinery. Current state-of-the-art hydraulic fluid power components and control technologies continue to be highly energy- and cost-inefficient and generate significant CO2 emissions, as speed and force are controlled by using metering valves to throttle the flow and control the hydraulic pressure. This is a simple but extremely inefficient method because the energy is dissipated through an orifice and consequently lost as heat; it is common for more than 50% of the input power to be wasted in this way. A recent study showed that the average energy power efficiency of fluid power systems is only 21%, and a 5% improvement in efficiency can save 0.51 quadrillion Btu of energy, which relates to a saving of US$10.1 billion and a reduction in CO2 emissions of over 33.95 million tonnes. Therefore, there is an urgent need to create new technologies to significantly improve hydraulic energy efficiency to enable efficient decarbonisation and electrification of off-road vehicles and achieve Net Zero. To significantly improve hydraulic fluid power efficiency to over 90%, I will provide a transformative change in next-generation digital hydraulic components and control technologies by developing new additively manufactured high-performance digital hydraulic valves (WP1) and novel digital hydraulic converters (WP2) to reduce hydraulic pressure and energy losses. I will create high-fidelity analytical modelling tools to understand the underlying science of complex fluid power components and systems and establish new additive manufacturing-based designs and methodologies for energy-efficient digital valves and converters. An intelligent control platform (WP3) which will integrate model- and machine-learning-based control algorithms, will be developed to control the digital valves and converters to achieve their optimum performance and maximum efficiencies. These transformative and emerging technologies will be implemented on off-road vehicles (e.g. excavators, elevating platforms) as technology demonstrations and case studies (WP4) in order to produce future digital hydraulic fluid power products and solutions for Net Zero (WP5). I will conduct scoping studies in Phases 1 and 2 to define new research directions, deliver high-impact publications and conduct the pathways to impact activities.The research outcomes will generate significant academic, economic and societal impact. They will ensure the UK has a unique world-leading research activity in digital fluid power and its future applications. UK-based companies will receive a competitive advantage in exploiting the deliverables from the Fellowship and in significantly influencing the application potential of digital hydraulic fluid power in the market, which can have an immense range of customers. The research outcomes will provide long-term zero-carbon machines for people living and improving their quality of life.[1]. 2020 UK Greenhouse Gas Emissions, Final Figures. National Statistics. Department for Business, Energy & Industrial Strategy. 2022.[2]. National Atmospheric Emissions Inventory UK Data. 2022.[3]. Greenhouse Gas Equivalencies Calculator, the US Environmental Protection Agency. 2022.
气候变化是我们这个时代最紧迫的环境挑战。 2020 年,交通运输行业是英国温室气体排放 (GHG) 的最大贡献者,总体贡献率为 24% [1]。虽然汽车、公共汽车和卡车等道路交通的脱碳正在通过采用电动替代方案顺利进行,但越野车辆这一重要领域在技术上却远远落后,并且是温室气体排放的主要贡献者。 2018年,英国越野车的温室气体排放总量为11,043千吨[2],相当于12.2吉磅燃煤的温室气体排放量,或140万户家庭每年的能源使用量[3]。液压流体动力传动广泛应用于工程机械、农业机械等越野车辆。当前最先进的液压流体动力元件和控制技术仍然是能源效率和成本效率极高的,并且会产生大量二氧化碳排放,因为速度和力是通过使用计量阀来节流流量和控制液压来控制的。这是一种简单但效率极低的方法,因为能量通过孔口耗散并最终以热量的形式损失掉;通常超过 50% 的输入功率就这样被浪费了。最近的一项研究表明,流体动力系统的平均能源效率仅为21%,效率提高5%可节省0.51千万亿英热单位的能源,这相当于节省101亿美元,并减少二氧化碳排放量超过3395万吨。因此,迫切需要创造新技术来显着提高液压能效,以实现越野车的高效脱碳和电气化,实现净零排放。为了将液压流体动力效率显着提高到 90% 以上,我将通过开发新型增材制造的高性能数字液压阀 (WP1) 和新型数字液压转换器 (WP2),为下一代数字液压元件和控制技术带来变革。以减少液压和能量损失。我将创建高保真分析建模工具,以了解复杂流体动力组件和系统的基础科学,并为节能数字阀门和转换器建立新的基于增材制造的设计和方法。将开发一个智能控制平台(WP3),该平台将集成基于模型和机器学习的控制算法,以控制数字阀门和转换器,以实现其最佳性能和最大效率。这些变革性新兴技术将作为技术演示和案例研究(WP4)在越野车辆(例如挖掘机、升降平台)上实施,以生产未来的数字液压流体动力产品和净零解决方案(WP5)。我将在第一阶段和第二阶段进行范围界定研究,以确定新的研究方向,发表高影响力的出版物,并开展影响活动的途径。研究成果将产生重大的学术、经济和社会影响。他们将确保英国在数字流体动力及其未来应用方面拥有独特的世界领先的研究活动。英国公司将在利用该奖学金的成果以及显着影响数字液压流体动力在市场上的应用潜力方面获得竞争优势,该市场可以拥有广泛的客户。研究成果将为人们的生活提供长期的零碳机器,提高他们的生活质量。[1]。 2020 年英国温室气体排放量,最终数据。国家统计。商业、能源和工业战略部。 2022年。[2]。英国国家大气排放清单数据。 2022年。[3]。温室气体当量计算器,美国环境保护署。 2022 年。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Pan其他文献

The parameterized level set method for structural topology optimization with shape sensitivity constraint factor
具有形状敏感约束因子的结构拓扑优化参数化水平集方法
  • DOI:
    10.1007/s00366-019-00860-8
  • 发表时间:
    2019-09-17
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    M. Cui;Chenchun Luo;Guang Li;Min Pan
  • 通讯作者:
    Min Pan
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration
四端口高速切换阀配置中切换惯性液压系统的理论与实验研究
  • DOI:
    10.3390/en10060780
  • 发表时间:
    2017-06-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Min Pan;A. Plummer;Abdullah El Agha
  • 通讯作者:
    Abdullah El Agha
Expression of ectopic trypsin in atherosclerotic plaques and the effects of aprotinin on plaque stability.
动脉粥样硬化斑块中异位胰蛋白酶的表达以及抑肽酶对斑块稳定性的影响。
Option Pricing and Executive Stock Option Incentives: an Empirical Investigation under General Error Distribution Stochastic volatility Model
期权定价与高管股票期权激励:一般误差分布随机波动模型下的实证研究
  • DOI:
    10.1142/s0217595911003065
  • 发表时间:
    2011-11-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Pan;Shengqiao Tang
  • 通讯作者:
    Shengqiao Tang
miR-125b-mediated regulation of cell proliferation through the Jagged-1/Notch signaling pathway by inhibiting BRD4 expression in psoriasis
miR-125b 通过抑制银屑病中 BRD4 的表达,通过 Jagged-1/Notch 信号通路介导的细胞增殖调节
  • DOI:
    10.3892/mmr.2019.10187
  • 发表时间:
    2019-04-24
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Min Pan;Yao Huang;Xiaofang Zhu;Xiangfei Lin;D. Luo
  • 通讯作者:
    D. Luo

Min Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Pan', 18)}}的其他基金

Novel Integrated Control of Fluid-borne Noise in Fluid Power Systems
流体动力系统中流体噪声的新型集成控制
  • 批准号:
    EP/P022022/1
  • 财政年份:
    2017
  • 资助金额:
    $ 203.08万
  • 项目类别:
    Research Grant

相似国自然基金

融合自适应观测器的液压锚杆钻机全局滑模抗饱和控制方法
  • 批准号:
    62303464
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高压气动弹射的液压驱动系统性能刻画控制策略研究
  • 批准号:
    52305044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于开式筒壳液压成形钢/铝层合板变形机理及界面演变行为
  • 批准号:
    52305402
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多支撑三维战机液压管路动力学建模、分析优化及实验
  • 批准号:
    12372015
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
大型整体构件低能耗多道次局部加载变形协调机制及其液压系统研究
  • 批准号:
    52375378
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
  • 批准号:
    RGPIN-2017-03788
  • 财政年份:
    2021
  • 资助金额:
    $ 203.08万
  • 项目类别:
    Discovery Grants Program - Individual
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
  • 批准号:
    RGPIN-2017-03788
  • 财政年份:
    2021
  • 资助金额:
    $ 203.08万
  • 项目类别:
    Discovery Grants Program - Individual
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
  • 批准号:
    RGPIN-2017-03788
  • 财政年份:
    2020
  • 资助金额:
    $ 203.08万
  • 项目类别:
    Discovery Grants Program - Individual
Paternal Residential Exposure to Unconventional Oil and Gas Drilling (UOG)
父亲住宅暴露于非常规石油和天然气钻探 (UOG)
  • 批准号:
    10162589
  • 财政年份:
    2020
  • 资助金额:
    $ 203.08万
  • 项目类别:
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
  • 批准号:
    RGPIN-2017-03788
  • 财政年份:
    2020
  • 资助金额:
    $ 203.08万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了