Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing

通过超快激光制造的自由形状石英光纤

基本信息

  • 批准号:
    MR/X034615/1
  • 负责人:
  • 金额:
    $ 130.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

At a glance: Microstructured optical fibres are transforming science and technology in fields spanning telecommunications through to healthcare. Their unique offering of guiding properties continues to push the limits of established photonics and drive novel innovation and scientific discovery. However, a limit to this potential is approaching because many theoretically transformative fibres cannot be realised in practice due to manufacturing challenges. With this fellowship, I aim to unlock this unmet potential by developing a freeform optical fibre manufacturing process, which is unbound from conventional manufacturing constraints. The vast majority of optical fibre is produced for the telecommunications sector to satisfy exponentially rising data capacity needs. The type of fibre used in telecoms is typically conventional step-index fibre, comprised of a silica glass core surrounded by a lower-index doped-silica cladding. Solid fibre is inexpensive and guides with reasonably low-loss, but is fundamentally limited in performance by material absorption, scattering and high-dispersion amongst other factors.Over the past few decades, another type of optical fibre has emerged - microstructured optical fibre (MOF). MOF utilises a structured-material core-cladding in which light is guided through complex waveguiding mechanisms. Depending on the type, MOF can offer several advantages over conventional fibre including broad spectral transmission, low bend-loss, low latency and high-power delivery. Remarkably, certain MOFs guide light within a hollow region of the fibre. These so-called hollow-core fibres overcome problems faced by solid-core fibres such as material absorption, dispersion, optical damage and latency, as well as enabling an innovation-rich field of gas-filled sensors and light sources.MOF is manufactured by an approach known as stack-and-draw. Stack-and-draw is a two-step process: firstly, circular glass capillaries, rods and tubes are stacked laterally, often with added spacers, to form a scaled-up approximation of the fibre known as a preform. Secondly, the preform is drawn to fibre through a high-temperature furnace. The design of MOF developed so far has been heavily steered by the restrictive stacking process, e.g., hexagonally-packed Kagomé fibre and circle-tubular antiresonant fibre. Unfortunately, several types of MOF that have shown huge potential theoretically cannot be reasonably stacked, and so the vast applicability of MOF is beginning to plateau.To unlock this potential, we will develop a new preform manufacturing process capable of producing freeform fibre, i.e., fibre with arbitrarily structured cross-section, without compromising on fibre quality. In the proposed approach, short segments of the preform are precisely and arbitrarily machined using tailored laser-manufacturing methods. These segments are then bonded axially to form the preform which is drawn to fibre using traditional methods. Building upon a recent early feasibility demonstration, the fellowship will facilitate an overhaul of the laser-based approach to fabricating preforms and investigation of optimal glass bonding techniques. Amongst a trove of benefits, freeform fibre will bring drastically lower loss, increased stability, faster data transfer speeds and novel spectral guidance.The later stages of the fellowship will focus on developing fibre with unprecedented guiding performance and exploring applications of fibre with novel geometry. We aim to develop an industry-ready manufacturing method for freeform silica optical fibre, and further improve high-resolution glass macro-fabrication and advanced bonding and assembly capabilities. This work is expected to open up a new field of fibre optics research and nurture a team of dedicated researchers.
概览:微结构光纤正在改变从电信到医疗保健领域的科学技术,其独特的引导特性不断突破现有光子学的极限,推动创新和科学发现,但这种潜力存在局限性。由于制造方面的挑战,许多理论上的变革性光纤在实践中无法实现,我的目标是通过开发不受绝大多数光纤制造限制的自由形式传统光纤制造工艺来释放这一未满足的潜力。是为电信部门生产的,以满足呈指数级增长的数据容量需求。电信中使用的光纤类型通常是传统的阶跃折射率光纤,由较低折射率的掺杂二氧化硅包层包围的二氧化硅玻璃芯组成,价格低廉。并以相当低的损耗进行引导,但性能从根本上受到材料吸收、散射和高色散等因素的限制。在过去的几十年里,出现了另一种类型的光纤——微结构光纤MOF 采用结构材料纤芯包层,根据类型的不同,MOF 可以提供多种优于传统光纤的优势,包括宽光谱传输、低弯曲损耗、低延迟和高传输速率。值得注意的是,某些 MOF 在光纤的空心区域内引导光,这些所谓的空心光纤克服了实心光纤面临的问题,例如材料吸收、色散、光学损伤和光损伤。延迟,以及实现充满创新的充气传感器和光源领域。MOF 是通过称为“堆叠和拉伸”的方法制造的,该过程分为两步:首先是圆形玻璃。毛细管、棒和管横向堆叠,通常带有附加垫片,形成称为预制棒的放大近似纤维。其次,预制棒通过高温炉拉制成光纤。迄今为止开发的MOF在很大程度上受到限制性堆叠工艺的影响,例如六边形堆积的Kagomé纤维和圆管状反谐振纤维,不幸的是,理论上表现出巨大潜力的几种类型的MOF无法合理堆叠,因此具有广泛的适用性。 MOF 的产量正开始趋于稳定。为了释放这一潜力,我们将开发一种新的预制件制造工艺,能够生产自由形态纤维,即具有任意结构的纤维在所提出的方法中,使用定制的激光制造方法对预制件的短段进行精确且任意的加工,然后将这些段轴向粘合以形成预制件,然后使用传统方法将其拉制成光纤。在最近的早期可行性论证的基础上,该奖学金将促进基于激光的预制棒制造方法的彻底改革以及最佳玻璃粘合技术的研究,自由形状光纤将带来显着的降低成本。损耗、更高的稳定性、更快的数据传输速度和新颖的光谱引导。该奖学金的后期阶段将重点开发具有前所未有的引导性能的光纤,并探索具有新颖几何结构的光纤的应用。我们的目标是开发一种工业级的自由曲面制造方法。这项工作有望开辟光纤研究的新领域,并培养一支专门的研究人员团队。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Calum Ross其他文献

An Analysis of Vascular Access Thrombosis Events From the Proactive IV irOn Therapy in hemodiALysis Patients Trial
血液透析患者主动静脉铁剂治疗试验中血管通路血栓形成事件的分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6
  • 作者:
    P. Thomson;P. Mark;M. Robertson;C. White;S. Anker;S. Bhandari;K. Farrington;A. Jardine;P. Kalra;J. McMurray;D. Reddan;D. Wheeler;C. Winearls;I. Ford;I. Macdougall;Georgia Habib Christopher Julie Waqar Andrew Alison Jim Pa Winnett Akbani Winearls Wessels Ayub Connor Brown ;Georgia Winnett;H. Akbani;C. Winearls;Julie Wessels;W. Ayub;A. Connor;A. Brown;J. Moriarty;Paramit Chowdury;M. Griffiths;I. Dasgupta;S. Bhandari;T. Doulton;I. Macdougall;J. Barratt;E. Vilar;S. Mitra;B. Ramakrishna;J. Nicholas;Calum Ross;A. Khwaja;M. Hall;A. Kirk;Stuart J Smith;M. Jesky;C. Day;B. Alchi;J. Stratton;H.A. Clarke;S. Walsh;Rebecca Brown;K. Mccafferty;Laurie R. Solomon;Suresh Ramadoss;Kolitha Basanyake;S. Lawman;P. Kalra;G. Balasubramaniam;A. Power;D. Banerjee;P. Swift;M. Wellberry;Christopher Goldsmith;T. Ledson;A. Mikhail;R. Benzimra;S. Bell;A. Severn;J. Neary;A. Doyle;P. Thomson;G. Shivashankar;Stephanie Bolton;Michael Quinn;P. Maxwell;J. Harty;I. Ford;S. Anker;K. Farrington;J. McMurray;C. Tomson;D. Wheeler;M. Petrie;E. Connolly;P. Jhund;M. Macdonald;P. Mark;M. Walters;J. Peacock;C. Isles;D. Reddan;Jane Aziz;Sarah Boyle;C. Burton;R. Clarke;E. Dinnett;Neil Hillen;S. Kean;C. Kerr;H. Murray;A. Reid;K. Wetherall;R. Wilson;C. White;Sadiq Andani
  • 通讯作者:
    Sadiq Andani
Using the WHO ASSIST to Assess Drug and Alcohol Misuse in the Acute Mental Health Setting to Guide Treatment Interventions
使用 WHO ASSIST 评估急性心理健康环境中的药物和酒精滥用情况,以指导治疗干预措施
The Alcohol Smoking and Substance Involvement Screening Test (ASSIST) in an Acute Mental Health Setting
急性心理健康环境中的饮酒和物质参与筛查测试 (ASSIST)

Calum Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于TCR免疫组库研究蛋白冠启动适应性免疫在纳米二氧化硅致肺纤维化中的作用与机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玄武岩纤维和纳米二氧化硅协同作用全再生混凝土增强机理及破坏模型
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
miR-494-3p靶向UBQLN1调控巨噬细胞激活在纳米二氧化硅致肺纤维化中的作用及机制研究
  • 批准号:
    82273658
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
miR-92b-3p/SLC7A11调控铁死亡在纳米二氧化硅致肺纤维化中的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
纳米二氧化硅通过下调SIRT1碱化肺泡上皮细胞溶酶体及诱导肺纤维化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
  • 批准号:
    2319429
  • 财政年份:
    2024
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Standard Grant
Meeting future net-zero carbon energy needs: Improved borehole sealing using compacted bentonite and silica grout.
满足未来净零碳能源需求:使用压实膨润土和二氧化硅灌浆改进钻孔密封。
  • 批准号:
    2879042
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Studentship
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
  • 批准号:
    10668166
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
  • 批准号:
    10908927
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
Fuel Regeneration from CO2 by Grid-Aligned Biomimetic Catalysts on Functionalized Silica
通过功能化二氧化硅上的网格对齐仿生催化剂从二氧化碳中再生燃料
  • 批准号:
    22KF0217
  • 财政年份:
    2023
  • 资助金额:
    $ 130.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了