Waves, Aerosol and Gas Exchange Study (WAGES)
波浪、气溶胶和气体交换研究 (WAGES)
基本信息
- 批准号:NE/G003696/1
- 负责人:
- 金额:$ 63.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IIt is widely accepted that the activities of mankind are leading to changes in global climate; however, the extent of those changes is far from certain due to the complexity of the climate system and the number of interacting processes involved. A central process is the interaction of incoming solar (shortwave) radiation, and outgoing infra-red (longwave) radiation with the atmosphere and in particular with clouds. Clouds present a large source of variability and uncertainty in the radiative balance due to the variation in size, location, and type of cloud, and also to the strong variation in properties such as reflectivity with changes in the concentration and size distribution of cloud droplets or ice crystals. Marine stratocumulus clouds (extensive sheets of low level clouds) play a major role. The size and number of their cloud droplets depends strongly on the number of aerosol particles available for droplets to form on. Sea-salt aerosol are a major source of such condensation nuclei. The generation of sea-salt aerosol occurs through evaporation of water droplets generated by bubble bursting and spray torn from wave tops by the wind. The size and number of droplets produced, and hence of the aerosol produced, varies greatly with different conditions such as wind speed, wave state, wave breaking, etc. In order to accurately represent marine clouds, and so get the radiation balance correct in climate models, we must first determine how much aerosol and of what size, is generated under any given conditions. There is much uncertainty in this (a factor of 10), particularly for the smallest aerosols which are the most important for climate processes. This project will measure the amount of aerosol at different sizes generated near the surface and transported upwards into the atmosphere, along with the wind speed, wave size and white-capping under a wide range of different conditions. The results will improve our understanding of aerosol generation, and ultimately the way in which clouds are represented within climate models. Another major uncertainty in modelling the future climate is the rate at which CO2 is transferred between the atmosphere and the oceans. CO2 absorbs infra-red radiation; an increase in CO2 in the atmosphere means more infra-red radiation is absorbed, causing a warming of the atmosphere. Although CO2 is absorbed by the oceans as a whole, at different times and places the transfer of CO2 between the atmosphere and ocean can occur in either direction depending upon the local concentrations of the gas in the air and water. The rate of the transfer also depends on the wind speed, sea-state, wave breaking etc. As with aerosol production, there are large uncertainties (about a factor of two in some conditions) in how the rate of transfer varies with different conditions. Direct measurements of the transfer of CO2 between the atmosphere and ocean, along with those of the meteorological and wave conditions, will be used to reduce the uncertainty in the parameterization of CO2 transfer. This will in turn allow improvements to long term climate models. To untangle the influence of all the different parameters that affect gas and aerosol fluxes we need a great deal of data. To obtain this we will use automatic measuring systems on the world's last weather ship which stays at sea all year round in a region which experiences a wide range of wind and wave conditions. We will maintain the measurements for three years. In addition we will have three manned cruises of 4 weeks each where we will deploy a buoy to make detailed measurements of wave breaking and will also fly a video camera from a kite to obtain continuous whitecap data for periods of a few hours or more. These data will allow us to study the process that drive the fluxes in great detail, and they will also be used to verify the less detailed data from the autonomous wave and whitecap systems which will measure continuously for the whole three years.
IIT被广泛认为,人类的活动正在导致全球气候变化。但是,由于气候系统的复杂性和所涉及的相互作用过程的数量,这些变化的程度远非确定。中心过程是传入太阳能(短波)辐射的相互作用,以及外向的红外(长波)辐射与大气,尤其是与云的相互作用。由于云的大小,位置和类型的变化以及属性的强烈变化,例如反射率,云滴剂或冰晶的尺寸分布的变化,云呈辐射平衡的可变性和不确定性很大。海洋分层云云(低水平云的广泛床单)起着重要作用。它们的云液滴的大小和数量在很大程度上取决于可在上面形成的气溶胶颗粒的数量。海盐气溶胶是这种冷凝核的主要来源。海盐气溶胶的产生是通过蒸发出来的水滴发生的,这些水滴是由风爆发而产生的,并从风中从波顶上撕裂。为了准确代表海洋云,生成的液滴的大小和数量以及产生的气溶胶的大小和导致气溶胶的变化很大,例如风速,波浪状态,波浪破裂等,因此在气候模型中正确地辐射平衡,我们必须首先确定在任何给定的条件下,生成了多少气溶胶和大小。这有很多不确定性(10倍),特别是对于最小的气溶胶,这对于气候过程最重要。该项目将测量在表面附近产生的不同尺寸的气溶胶量,并在各种不同条件下的风速,波浪尺寸和白色封顶,向上运输到大气中。结果将改善我们对气溶胶生成的理解,并最终在气候模型中代表云的方式。建模未来气候的另一个主要不确定性是二氧化碳在大气和海洋之间转移的速度。 CO2吸收红外辐射;大气中二氧化碳的增加意味着更多的红外辐射被吸收,导致大气变暖。尽管二氧化碳被整个海洋吸收,但在不同的时间并将二氧化碳在大气和海洋之间的转移可以沿任一方向发生,这取决于空气和水中气体的局部浓度。转移速率还取决于风速,海态,波浪破裂等。与气溶胶的产生一样,在转移速率随不同条件变化的情况下,不确定性很大(在某些条件下约为两倍)。直接测量二氧化碳在大气和海洋之间的转移以及气象和波条件的转移,将用于减少二氧化碳转移参数化的不确定性。反过来,这将允许改进长期气候模型。为了解开影响气体和气溶胶通量的所有不同参数的影响,我们需要大量数据。为了获得这一点,我们将在世界上一艘天气船上使用自动测量系统,该系统全年都在海上居住,在经历各种风和波浪状况的地区。我们将维持三年的测量。此外,我们将进行三次载人4周的载人巡游,在那里我们将部署浮标,以详细测量波浪破裂,还将从风筝中飞行摄像机,以获取连续的WhiteCap数据,以持续几个小时或更长时间。这些数据将使我们能够研究驱动通量详细范围的过程,并且还将使用它们来验证从自主波和WhiteCap系统中详细的数据,这些数据将在整个三年内连续测量。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainties in wind speed dependent CO<sub>2</sub> transfer velocities due to airflow distortion at anemometer sites on ships
风速相关 CO 的不确定性
- DOI:10.5194/acp-10-5123-2010
- 发表时间:2010
- 期刊:
- 影响因子:6.3
- 作者:Griessbaum F
- 通讯作者:Griessbaum F
A Spar Buoy for High-Frequency Wave Measurements and Detection of Wave Breaking in the Open Ocean
- DOI:10.1175/2010jtecho764.1
- 发表时间:2011-04-01
- 期刊:
- 影响因子:2.2
- 作者:Pascal, Robin W.;Yelland, Margaret J.;Leighton, Timothy G.
- 通讯作者:Leighton, Timothy G.
Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean
公海白浪上海浪喷雾气溶胶产生的近地表测量
- DOI:10.5194/os-9-133-2013
- 发表时间:2013
- 期刊:
- 影响因子:3.2
- 作者:Norris S
- 通讯作者:Norris S
Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind speed range
- DOI:10.1029/2009gl041203
- 发表时间:2010-01
- 期刊:
- 影响因子:5.2
- 作者:B. Huebert;B. Blomquist;M. Yang;S. Archer;P. Nightingale;M. Yelland;J. Stephens;R. Pascal;B. Moat
- 通讯作者:B. Huebert;B. Blomquist;M. Yang;S. Archer;P. Nightingale;M. Yelland;J. Stephens;R. Pascal;B. Moat
Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships
- DOI:10.5194/acp-15-10619-2015
- 发表时间:2015-01-01
- 期刊:
- 影响因子:6.3
- 作者:Prytherch, J.;Yelland, M. J.;Norris, S. J.
- 通讯作者:Norris, S. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meric Srokosz其他文献
Temporal variability of GNSS-Reflectometry ocean wind speed retrieval performance during the UK TechDemoSat-1 mission
- DOI:
10.1016/j.rse.2020.111744 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Matthew Lee Hammond;Giuseppe Foti;Christine Gommenginger;Meric Srokosz - 通讯作者:
Meric Srokosz
Meric Srokosz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meric Srokosz', 18)}}的其他基金
FInite eLement Adaptive grid Modelling of Ecosystems and Nutrient Transport
生态系统和养分输送的有限元自适应网格建模
- 批准号:
NE/F00270X/1 - 财政年份:2008
- 资助金额:
$ 63.86万 - 项目类别:
Research Grant
A proof-of-concept study for the assimilation of satellite altimeter wave period to improve operational ocean wave forecasts
同化卫星高度计波浪周期以改进业务海浪预报的概念验证研究
- 批准号:
NE/D007356/1 - 财政年份:2006
- 资助金额:
$ 63.86万 - 项目类别:
Research Grant
相似国自然基金
基于离子复合蛋白冠微聚沉“斥力屏障”的脂质体吸入气雾剂的稳定性及致敏性调控机制
- 批准号:82373800
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于“限域-分凝”策略的多肽药物吸入气雾剂的构建及其稳定性调控机制探究
- 批准号:82104070
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气雾剂智能辅助给药技术的计算生物力学研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
以白及多糖为骨架材料构建阴道给药新剂型:柔性脂质体后膨胀型水凝胶泡沫气雾剂
- 批准号:81303231
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
广痛消君药元胡经直肠吸收止痛机制探索
- 批准号:81072812
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Aerosol Ventilation to Reduce Ventilator Induced Lung Injury
气雾通气可减少呼吸机引起的肺损伤
- 批准号:
10383334 - 财政年份:2022
- 资助金额:
$ 63.86万 - 项目类别:
Laboratory Chamber Studies on Gas-Phase Photooxidation and Aqueous Chemistry of Phenols and Methoxyphenols in Biomass Burning Organic Aerosol Formation
生物质燃烧有机气溶胶形成中苯酚和甲氧基苯酚的气相光氧化和水化学的实验室研究
- 批准号:
2108916 - 财政年份:2021
- 资助金额:
$ 63.86万 - 项目类别:
Continuing Grant
Collaborative Research: Greater New York (NY) Oxidant, Trace gas, Halogen, and Aerosol Airborne Mission (GOTHAAM)
合作研究:大纽约 (NY) 氧化剂、微量气体、卤素和气溶胶机载任务 (GOTHAAM)
- 批准号:
2023641 - 财政年份:2020
- 资助金额:
$ 63.86万 - 项目类别:
Standard Grant
Collaborative Research: Greater New York (NY) Oxidant, Trace gas, Halogen, and Aerosol Airborne Mission (GOTHAAM)
合作研究:大纽约 (NY) 氧化剂、微量气体、卤素和气溶胶机载任务 (GOTHAAM)
- 批准号:
2023670 - 财政年份:2020
- 资助金额:
$ 63.86万 - 项目类别:
Standard Grant
Collaborative Research: Greater New York (NY) Oxidant, Trace gas, Halogen, and Aerosol Airborne Mission (GOTHAAM)
合作研究:大纽约 (NY) 氧化剂、微量气体、卤素和气溶胶机载任务 (GOTHAAM)
- 批准号:
2023605 - 财政年份:2020
- 资助金额:
$ 63.86万 - 项目类别:
Standard Grant